
BioMed CentralJournal of Biological Engineering

ss
Open AcceResearch
TinkerCell: modular CAD tool for synthetic biology
Deepak Chandran*1, Frank T Bergmann1,2 and Herbert M Sauro1

Address: 1Department of Bioengineering, University of Washington, Box 355061, William H. Foege Building, Room N210E, Seattle, WA, 98195-
5061, USA and 2Keck Graduate Institute, 535 Watson Drive, Claremont, CA, 91711, USA

Email: Deepak Chandran* - deepakc@u.washington.edu; Frank T Bergmann - fbergman@u.washington.edu;
Herbert M Sauro - hsauro@u.washington.edu

* Corresponding author

Abstract
Background: Synthetic biology brings together concepts and techniques from engineering and
biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between
computational modeling and biological data. Using a CAD application, it would be possible to
construct models using available biological "parts" and directly generate the DNA sequence that
represents the model, thus increasing the efficiency of design and construction of synthetic
networks.

Results: An application named TinkerCell has been developed in order to serve as a CAD tool for
synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts.
Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or
rate constants. Models that are constructed using these parts can be analyzed using various third-
party C and Python programs that are hosted by TinkerCell via an extensive C and Python
application programming interface (API). TinkerCell supports the notion of a module, which are
networks with interfaces. Such modules can be connected to each other, forming larger modular
networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution
license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com.

Conclusion: An ideal CAD application for engineering biological systems would provide features
such as: building and simulating networks, analyzing robustness of networks, and searching
databases for components that meet the design criteria. At the current state of synthetic biology,
there are no established methods for measuring robustness or identifying components that fit a
design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework
allows it to cope with changes in the field. Such changes may involve the way parts are characterized
or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily
accept third-party algorithms, allowing it to serve as a platform for testing different methods
relevant to synthetic biology.

Background
Systems level modeling of biological systems has pro-
vided mathematical explanations for experimental obser-

vations [1-3]. One of the consequences of such
understanding has been the ability to design and engineer
synthetic biological networks inside cells, which has given

Published: 29 October 2009

Journal of Biological Engineering 2009, 3:19 doi:10.1186/1754-1611-3-19

Received: 4 July 2009
Accepted: 29 October 2009

This article is available from: http://www.jbioleng.org/content/3/1/19

© 2009 Chandran et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19874625
http://www.jbioleng.org/content/3/1/19
http://creativecommons.org/licenses/by/2.0
http://www.tinkercell.com
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
rise to the field of Synthetic Biology [4]. The idea of engi-
neering biological systems brings together concepts from
various fields. While the laboratory procedure at present is
borrowed from genetic engineering, concepts such as
abstraction and interchangeable parts are taken from
computer science and electrical engineering. Synthetic
biology introduces the notion of biological "parts" [4],
which are individual components that can be assembled
in different ways to construct synthetic networks with dif-
ferent functions. Networks built by different engineers can
then be reused to construct larger networks [5], much like
a programmer using existing subroutines to build a new
program more efficiently. Since synthetic biology is a
young field, the best practices for making molecular biol-
ogy interchangeable and programmable have not been
established. Nonetheless, various success stories [6-11]
have shed light on the enormous potential of synthetic
biology to understand fundamental science [4] or create
new solutions for applications ranging from fuels [12] to
medicine [13].

The terminology, software, and laboratory procedures
required to push synthetic biology forward are still in
development. However, one can anticipate that certain
key concepts such as standardization and modularity will
become commonplace in synthetic biology [14]. In syn-
thetic biology, the need for standardization exists at differ-
ent levels. At one level, there is a standard for defining
parts. While biological parts are the individual compo-
nents for building a network, standardized parts contain
additional restrictions that are intended to make synthetic
networks easier to build, more reliable, and easier to
exchange. An existing standard is the standard assembly
[15], which has made DNA assembly simpler. In future, it
is anticipated that standards will also exist for describing
the dynamics of a part; for example, standard promoter
parts might contain a "strength" value, describing its effi-
ciency in recruiting RNA polymerase under some standard
environmental condition [16]. This leads to the second
level of standards, which describes parts in a computer-
readable format such as the Resource Definition Language
[17,18], so that searching and organizing parts can be
automated. Under such a framework, parts could be
organized by a defined ontology. The third level of stand-
ards applies to computational models. While there are
existing standard formats for representing biological
models [19,20], synthetic biology models might require
additional information such as the DNA sequence or spe-
cific information about the parts that are needed to phys-
ically construct the network.

Several issues in modeling for synthetic biology have to be
addressed. First, a complete model should support infor-
mation for computational analysis as well building the
physical biological circuit. Second, due to the fact that

synthetic biology spans multiple disciplines, a large
number of analyses may be possible on synthetic net-
works, ranging from dynamical systems analysis to analy-
sis of the DNA sequence or statistics on the part usage in
the model. The software application presented in this
work, TinkerCell, will address these issues. While Tinker-
Cell targets synthetic biology, it addresses several issues
that are equally applicable outside the field. These issues
include support for third-party libraries, modular design
of networks, flexible modeling framework, and flexible
visual format. TinkerCell is an improvement on a similar
effort, Athena, by the same authors [21]. Athena
addressed issues such as modular design of networks and
biological parts. However, the underlying design of Ath-
ena was not as flexible as it was intended to be. For exam-
ple, Athena was not able to support an ontology of
biological parts. Due to such limitations in the design, the
project was completely restarted under a different name.

Existing computational tools
Numerous software tools exist that allow construction
and analyses of models using scripts or visual interfaces. A
comprehensive list can be found at http://www.sbml.org.
Some of these applications include Jarnac [22], JDesigner
[22], CellDesigner [23], Bio-Tapestry [24], PySCeS [25],
BioJADE [26], little-B [27], SynBioSS [28], ProMot [29-
31], and Antimony [32]. Each of the applications have
their respective advantages. For example, Jarnac and
PySCeS are highly flexible due to their programming
interface. Little-B is similar, building on Lisp, but it sup-
ports modules in addition. CellDesigner offers a plug-in
interface, which has permitted the community to add new
features. BioTapestry has a simple visual depiction for
genetic networks and genetic modules. BioJADE and Syn-
BioSS, being synthetic biology applications, support a
parts database [33]. Antimony [32] is a C/C++ library and
an editor for defining modular models using a human-
readable script. ProMot is similar but also has a visual
interface that supports modularity as well as using parts to
compose a circuit [30]. We considered that TinkerCell
should, at the least, contain the qualities of each, which
include the flexibility of programming, plug-in support,
database support, modularity, and ability to construct
genetic networks.

However, the intent behind TinkerCell is not to create yet
another modeling application, but to create an applica-
tion that can serve as a host to the algorithms, data, and
ontologies that the synthetic biology and the systems biol-
ogy community can offer. Unlike most modeling applica-
tions, TinkerCell does not impose a particular modeling
method (e.g. differential equations), visual representa-
tion, or a strict definition of a model. It has a very generic
representation of a network, and the algorithms that use
the information provide the interpretation.
Page 2 of 17
(page number not for citation purposes)

http://www.sbml.org

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
Results and Discussion
The application named TinkerCell is a synthetic biology
CAD tool for visually constructing and analyzing biologi-
cal networks (see Figure 1). The visual interface alone does
not have any analysis capabilities. The analyses are per-
formed by third-party C or C++ libraries and Python mod-
ules that interface with TinkerCell. Therefore, TinkerCell
can be thought of as a front-end to C and Python pro-
grams.

The target audience for TinkerCell fall into three catego-
ries: the users, the collaborators, and the developers. The
users would construct models in TinkerCell using the vis-
ual or scripting interface, access parts from database(s),
and analyze the model using numerous available func-
tions. The collaborators provide functions focusing on
specific tasks. For example, one collaborator who hosts an
E. coli database might add a Python script to TinkerCell for

accessing that database. Another collaborator might add a
complex algorithm for analyzing the stability of models.
The collaborators benefit from TinkerCell because they
can use it as a medium for presenting their tools to the
community. The developers are experienced programmers
who wish to add new interfaces or novel features to Tink-
erCell. Alternatively, the developers may also use the Tink-
erCell Core library to construct a new software
application. The users benefit from both the collaborators
and developers by being able to use the functions and fea-
tures that they provide.

Features
Depending on the interests of the individual, different fea-
tures of TinkerCell may be more important than others.
The next five sections describe four primary categories of
features that are provided by TinkerCell.

Screenshot of TinkerCellFigure 1
Screenshot of TinkerCell. This is a screenshot from TinkerCell showing a system involving three cells. Models are con-
structed using components available in the parts catalog, which is located at the top left. Some of the components used in this
system are cells, membrane proteins, fluorescent proteins, small molecules, and genes. Below the parts catalog is the catalog of
reactions, which includes reactions such as enzyme catalysis and transcriptional regulation. A history window is located at the
top right. The plot window can hold multiple plots, including 3D surface plots.
Page 3 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
Modeling and analysis
TinkerCell provides visual and script-based modeling
interface, which uses Antimony scripts [32]. The visual
interface is slightly more generic than the script interface
and provides default equations for transcriptional rates
and other reactions. The models can also contain com-
partments, which are physically separated regions of a sys-
tem.

Numerous functions are available in TinkerCell for ana-
lyzing a constructed model. These include deterministic
[34] and stochastic simulation algorithms [35], metabolic
control analysis [25], structural analysis [25], flux-balance
analysis [36], one-dimensional and two-dimensional
steady state analysis, and centrality measurements [37].

Third-party functions and scripts
TinkerCell provides a convenient way for users to inte-
grate their functions with TinkerCell's user interface. The
functions listed at the end of the previous section are not
built-in functions. They are provided as plug-ins, or fea-
tures that can be added to TinkerCell without modifying
the existing program. Users with knowledge of the C or
Python languages can add more functions to TinkerCell.
This is done by either placing compiled C libraries in the
Plug-ins/C folder or listing Python scripts in the "python-
scripts.txt" text file; TinkerCell will automatically display
these functions in its menu of functions.

The ability to readily add new functions will allow Tinker-
Cell to be used as a means of contributing new functions
to the community. These functions may range from math-
ematical analysis to database support or sequence analy-
sis.

Synthetic biology
Models in TinkerCell are constructed using "parts" from a
catalog. This catalog is defined externally in an Extensible
Markup Language (XML) file; in future, this XML file will
be replaced by a catalog from a parts database. Each part
in the model can store a large amount of information
associated with the part, such as database IDs, annotation,
ontology, parameters, equations, sequence, and informa-
tion required by experimentalists, such as plasmid infor-
mation or restriction sites found within the part. Parts can
be loaded along with all their known information from
databases, although this feature depends on the growth of
the databases themselves.

Being able to store information about each part permits
operations such as loading of parts from a database and
testing how a particular part affects the model. In contrast,
a conventional modeling application that solely uses var-
iables, equations, and parameters to describe a model will
have difficulty replacing a single part, because it would

need to identify the parameters and equations associated
with that part. Applications that do utilize a database
often limit the number of parameters in the model [28],
thus sacrificing some flexibility. TinkerCell achieves the
same without compromising flexibility.

Since the current synthetic networks are mostly composed
of genetic networks, TinkerCell has extensive support for
constructing gene regulatory networks by connecting parts
such as promoters, ribosomal binding sites (RBS), and
other genetic components listed in the parts catalog.
When parts are connected together, TinkerCell will auto-
matically derive rate equations [38] for transcription and
translation by looking at the transcription factors bound
to operator sites. The RBS part's parameters are also auto-
matically utilized in the translation rate.

Python and C functions are available for getting and set-
ting information about the parts. These functions can be
used by third-party scripts to export information needed
by experimentalists [17,18] as well as validating the
model: for example, one script can check whether the
plasmid containing each part have compatible antibiotic
resistance genes and restrictions sites and suggest changes.
Due to limited data, such features are not present in Tink-
erCell, but TinkerCell's design is ideal for incorporating
such features.

Modularity
TinkerCell supports the ability to construct new models
by connecting existing models. This is achieved by encap-
sulating a model as a "module". Modules contain inter-
faces that allow them to "connect" to other modules. This
idea is borrowed from electric engineering, where com-
plex circuits are created by connecting modules that pro-
vide specific functions. How the concept of modularity
maps to biological systems is an open question [39,40],
but by supporting this idea, TinkerCell can serve as a plat-
form for experimenting with the concept of modularity.

Plug-in interface and Core library
TinkerCell is extensible at different levels. At one level,
users can add new Python and C functions to the menu of
functions available in TinkerCell. At a lower level, pro-
grammers can make more significant additions by writing
new plug-ins. For example, the menu of C and Python
functions itself is a plug-in. Similarly, the rate equations
and modeling framework is controlled by a plug-in. By
adding new plug-ins, it is possible to introduce different
modeling methods and new visual interfaces in Tinker-
Cell. Users who wish to use optional plug-ins may down-
load them into their TinkerCell Plugins folder. Detailed
documentation on the plug-in framework is available at
http://www.tinkercell.com, under the "Design and frame-
work" link.
Page 4 of 17
(page number not for citation purposes)

http://www.tinkercell.com

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
Methods
TinkerCell is organized in layers, with the bottommost
layer being a generic API for constructing network draw-
ing programs and the top-most layer being a scripting
interface. TinkerCell is extensible at each of the layers.
There is an additional level of flexibility provided by the
XML files that load the ontology of parts and connections.
The goal of this structure is to foster contributions from
the community.

The Core library
The TinkerCell Core library is a C++ library built using the
Qt Toolkit 4.5.0 [41]. The Core library contains the data
structures and functions for drawing parts and connec-
tions and storing information associated with those items
(see Figure 2). It provides an API which can be used to
build new network drawing programs. The Core library
also provides support for C functions and a generic con-
sole window, which is currently used as a Python console
but can later be used to support other languages as well.
The complete TinkerCell application is a collection of
plug-ins that utilize the TinkerCell Core library in order to
provide the full set of features. Throughout this article, the
name "TinkerCell" will refer to the collection of plug-ins
and the TinkerCell Core library, because the Core library
alone has no modeling capability. Extensive documenta-
tion on the Core library is available at http://www.tinker
cell.com. A small example of using the Core library to con-
struct a new program is also provided with the TinkerCell
source code.

Plug-ins and flexible modeling framework
TinkerCell uses the notion of plug-ins. Plug-ins are C++
programs that add new features to TinkerCell without
altering the existing code, thus allowing programmers to
extend TinkerCell. The current set of plug-ins are respon-
sible for storing parameters, rate equations, and other
information relevant to modeling as well as storing
sequence and other details needed for physical construc-
tion of the network. The plug-ins also provide the user
interface for editing these values. The complete TinkerCell
application is composed of a collection of plug-ins that
build on the TinkerCell Core library. Plug-ins are respon-
sible for providing visual features such as scaling and
coloring as well as modeling features such as loading the
catalog of parts and connections and inserting parts and
connection from that catalog.

An important role of plug-ins is defining what informa-
tion can be stored in TinkerCell models. For example, the
Numerical Attributes plug-in and the Stoichiometry plug-
in, together, ascertain that all TinkerCell models will con-
tain sufficient information to generate the stoichiometry
matrix and rate equations, which are required for generat-
ing differential equations and stochastic simulations.

Additional information, such as function definitions and
events, are added by other plug-ins.

While the existing plug-ins focus on building models
based on stoichiometry and rates, it is possible to write
new plug-ins that focus on other modeling approaches,
such as rule-based or Boolean modeling. The current set of
plug-ins do not include such approaches, but the underly-
ing structure of Tinker-Cell is not limited to any one mod-
eling approach.

C and Python interface
Plug-ins that are related to modeling are almost always
supported by C or Python functions. For example, the
Numerical Attributes plug-in and the Stoichiometry plug-

The TinkerCell Core APIFigure 2
The TinkerCell Core API. Shown here is the basic struc-
ture provided by the Core library. The Core library defines
data structures and functions for drawing nodes and connec-
tions. Each node and connection can contain "data" associ-
ated with that node or connection. This data can include
information such as parameters, equations, DNA sequence,
or database IDs. Plug-ins, both C and C++, and Python
scripts are responsible for populating the data inside each
node and connection. For example, a C++ plug-in is respon-
sible for adding the a table of parameter values to each node
and connection; another plug-in is responsible for adding
reaction rates to all the connections. Another small plug-in
stores and updates the spacial co-ordinates of all cells in the
model, allowing a modeler to use cell position information
inside the model. C and Python programs utilize all this infor-
mation to perform various analyses, including simulations.
Plug-ins also provide the graphical interface for viewing and
editing the information stored inside the items.
Page 5 of 17
(page number not for citation purposes)

http://www.tinkercell.com
http://www.tinkercell.com

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
in enrich the model with sufficient information to gener-
ate dynamic models, but the plug-ins themselves do not
perform the analysis. Instead, each plug-in provides an
API containing functions such as "getParameter",
"getRate", or "getStoichiometry", allowing third-party C
and Python programs to obtain the necessary information
needed to carry out a simulation or other analysis. Almost
every plug-in in TinkerCell exposes an API, creating a rich
C and Python API with over a hundred different func-
tions. The collection of API functions allow C and Python
programs to get or set kinetic information such as param-

eters, rates, functions, and stoichiometries, or change vis-
ual aspects such as positions, colors, and line widths (see
Figure 3). The API also provides ways for C and Python
programs to bring up dialogs, asking for user inputs (see
Figure 4).

All C and Python programs automatically run on separate
threads, allowing a user to continue working on a model
while a time consuming task is running. TinkerCell's
default simulators compile the model as a separate C pro-
gram, allowing the simulations to run at the speed of a

Graphical output from C/Python programsFigure 3
Graphical output from C/Python programs. Shown here are the outputs from two functions written in Python and C,
respectively. The screenshot in (a) shows the output from a Python script that converts TinkerCell models into PySCeS [25]
models and uses PySCeS to compute the control coefficients. The script adjusts the line widths and colors in the visual model
accordingly. Negative control coefficients are colored red and positive ones are colored blue. The screenshot in (b) is the out-
put from the flux balance analysis function in TinkerCell. The function is a C program that gets the stoichiometry matrix and
constraints from TinkerCell and uses LPSolve C library [36] for linear programming. The program then sets the line widths of
the reactions in the visual model according to the output from LPSolve.
Page 6 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
compiled C program. This strategy is used by the deter-
ministic simulator as well as the stochastic simulator,
where the speed gain is more visible.

The C API has been used to include the following C pro-
grams in TinkerCell: deterministic simulation and steady
state analysis using the Sundials library [34], stochastic
simulation using a custom C library, flux balance analysis
using LPsolve [36], and custom C programs that automat-
ically modify reaction kinetics and calculate loops in the
Jacobian matrix. The Python API has been used to include
the SciPy module [42], PySCeS module [25], NerworkX
module [37], custom programs for generating transcrip-
tional rate formulas, and another custom program for
generating FASTA files for the DNA parts in the model.

A few example Python scripts for interfacing with Tinker-
Cell are provided (see Additional File 1).

Modular design of networks
In TinkerCell, new models can be constructed by connect-
ing existing networks to one another. Such composable
networks, or modules, are constructed by defining inter-
faces. A user may declare one or more components of a
module as interfaces. These interfaces can then be con-
nected with one another, which indicates that the respec-
tive components of the modules have been merged. For
example, if a user wishes to construct a cascade of phos-
phorylation cycles [43], then they may simply connect the
kinase of one module to the phosphorylated protein in
the other module. This connection indicates that the
kinase in the first module and the phosphorylated protein
in the second module are both the same molecule. Two

Accessing RegulonDBFigure 4
Accessing RegulonDB. This screenshot shows the interface provided by the Python script that searches RegulonDB [44]
and provides the user with a list of parts from E. coli. The script uses the selected part's family information to identify it as a
promoter, RBS, coding sequence, or transcription factor. It then uses this information to search the appropriate types of parts
in RegulonDB. Additionally, the script looks at the connections made by the part to prune the list. For example, if a transcrip-
tion factor is regulating the selected promoter, then the program will only list the promoter sites that are regulated by the par-
ticular transcription factor. For later reference, the script also stores the RegulonDB ID and other information within the
parts.
Page 7 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
species that are merged become the same physical entity
(see Figure 5). The connections do not alter the modules
themselves, thus the modules are reusable.

Genetic modules
Another way to connect two or more modules is by intro-
ducing new reactions between the interfaces. The syn-
thetic biology community is familiar with the notion of
modules in the context of DNA. For example, if one mod-
ule is responsible for regulating a promoter and the next
module is situated downstream of the promoter, then the
first module regulates the second through its promoter. In
Tinker-Cell, this can be accomplished by connecting the
promoter of the upstream module to the gene in the
downstream module (see Figure 6). This connection
belongs to a special family of connections that represents
RNA polymerase activity along a DNA strand, known as
"PoPS" (Polymerase Per Second [16]) in the synthetic
biology community. The synthetic biology community
often uses other acronyms such as "RiPS" (Ribosomes Per
Second), which can also be modeled similarly.

Modules as composite parts
The synthetic biology community is familiar with the
notion of a "composite part", or a biological part that has
been constructed by assembling other parts together [33].
TinkerCell can represent such an object as a module. Each
sub-part inside the composite part retains its original set
of attributes and other information while the composite
part can have its own family and set of attributes. The C
and Python API can be used to access the parameters,
annotation, authorship, and list of sub-parts.

Just as with any other component in a model, modules
can have rate expressions describing their input and out-
put behavior. This allows a modeler to describe the behav-
ior of a composite part is an abstract way without being
forced to know all the internal details.

Support for standards
It is our anticipation that the growth in synthetic biology
will result in a general agreement in the community about
what attributes are needed to define a biological part. For
example, a promoter part might be defined by its DNA
sequence, operator sites, and binding affinity of RNA

Connecting modulesFigure 5
Connecting modules. Figure (a) shows a simple phosphorylation and dephosphorylation cycle. The cycle is converted to a
module by placing all the components inside a module box and declaring the proteins as interfaces. The interface items are
shown as small pins around the module box. The interface items can be used to connect one module to another, as shown in
(b). In figure (b), the module shown in (a) is copied and pasted three times. The three modules are connected together to form
an oscillating protein network [43]. The orange connections between the modules' interface pins indicate that the connected
components are the same. For example, the phosphorylated protein in the first module is the molecule as the kinase in the sec-
ond module. In other words, modules are connected by defining the shared components.
Page 8 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
polymerase. The last parameter has a physical interpreta-
tion, therefore models using this parameter of the pro-
moter part will be more coherent: the parameters used in
the model will have a standard meaning that is under-
stood by the community rather than solely by the model
designer. In contrast, when a model uses parameters
defined by the model designer, the physical interpreta-
tions of those parameters may not be clear. When all the
parameters and rate equations in a model have clear inter-
pretations, it becomes possible to carry out automated
procedures, such as finding real parts that fit the model.
The next three sections will describe how this idea of
standard parameters is supported, but not enforced, in
TinkerCell.

Parts ontology
Ontologies or other ways of organizing biological parts
will become necessary when annotating a model. Every
item in TinkerCell belongs to a "family" (see Figure 7).
The families themselves are defined in an external XML
file and are organized as a graph structure. For example,
the family named "Transcription Factors" is a subset of the
family named "Proteins". Each family is defined with a set
of attributes. For example, genes contain a "sequence"
attribute. In addition to sequence, promoters or RBS con-
tain a "strength" attribute, which is a number describing
the relative strength of the promoter or RBS. The hierarchy

of parts will be obtained from a database of biological
parts in future.

Reactions ontology
Similar to the part families, every connection between
parts in TinkerCell is also identified with a family. Exam-
ples of connection families are "Biochemical reaction",
"Binding reaction", and "Transcriptional regulation".
Each connection family also contains attributes; for exam-
ple, "Transcription regulation" contains parameters
named "h", the Hill co-efficient, and "Kd", the dissocia-
tion constant. These attributes define the standard param-
eters required to characterize the dynamics of the reaction.
Models that use such standard parameters would be easier
to interpret and carry out automatic operations because
the parameters have a well understood interpretations
that are independent of the modeler. The connection fam-
ilies are also loaded from an external XML file and will be
obtained directly from a database in future.

Using ontologies in models
The advantage of constructing models that also define the
family of each item is that plug-ins or third-party pro-
grams can utilize the fact that certain parts or connections
will always have certain parameters. An example is the
"Hill equations" Python script, which automatically gen-
erates rate equation using the fractional saturation model

A genetic moduleFigure 6
A genetic module. Shown here is a genetic module as they are often used in the synthetic biology community. The first mod-
ule, the Inverter, is usually placed under the control of some promoter, r1. When r1's activity is high, r2 is low, and when r1 is
low, r2 is high, hence the inversion. The dotted line between promoter r1 and the Inverter module can be thought of as the
flux of RNA polymerase. The connection between the Inverter module and the M1 module is also the same. Therefore, r2
controls the transcription rate of the genes in module M1.
Page 9 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
[38]. The script utilizes the fact that every "Transcription
regulation" connection contains a "Kd" and a "Hill"
parameter, and it uses these parameters to automatically
generate the transcription rate equation. Another Python
script included with TinkerCell searches the RegulonDB
database [44] for RBS, promoters, and terminators from E.
coli and automatically fill in appropriate attributes based
on the type of part that is selected; for example, when the
script sees a promoter, it adds the sigma factor informa-
tion to the part, and when it sees a terminator, it adds
information about whether or not it is a rho-dependent
terminator. An example plug-in that uses the family infor-
mation is the DNA sequence viewer (see Figure 8), which
assumes that every item of the family "DNA" will contain
an attribute called "sequence" and is able to present the
information visually. One can imagine other functions
where features of the promoter, such as the sigma-factor,
may be used within the model to provide additional
details, and the user can load different promoters from a

catalog of biological parts to test how the different pro-
moters affect the network.

It should be noted that the families and their attributes are
not defined within TinkerCell, so the algorithms are gen-
eral for any future ontology that the synthetic biology
community will adopt. In addition to the family informa-
tion, each part and connection in TinkerCell contains its
own annotation, storing information such as authorship,
references, and date. As with any other information in
Tinker-Cell, all of this information is accessible and edit-
able from C and Python.

Visual formats
Standard visual formats, such as the standard symbols
that are used to draw electronic circuits, allow network
diagrams to be unambiguous. While systems biology has
made progress to standardize visual representations of
biological systems [45], such standards for synthetic biol-
ogy are still in development [46]. TinkerCell has been

Each part and connection belongs to a familyFigure 7
Each part and connection belongs to a family. Each item in TinkerCell belongs to a family. Shown here is a screenshot
from Tinkercell with labels indicating the family that each part or connection belongs with. A family structure is important if a
model should support ontologies or interact with databases. For example, the family information can be used by a Python
script to screen for all the RBS parts being used in the model. The default visual representation can be changed by clicking the
mouse right-button on the family icon. Each connection family has a different arrowhead, which can also be replaced.
Page 10 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
designed so that it will be able to cope with a variety of vis-
ual standards or even multiple visual standards. This is
achieved by having a flexible visual representation. The
visual representation of proteins, genes, promoters, and
the rest of the parts are stored as XML files. These files are
generated using a polygon drawing program that comes
with TinkerCell. The same file format is used for arrow-
heads and decorators such as phosphorylation sites,
which keeps visual representations for those objects flexi-
ble as well.

In order to cope with a future visual standards, new files
will be generated using the polygon drawing program that
match the prescribed visual standard.

Genetic networks
Since the majority of the current synthetic networks are
genetic networks, TinkerCell gives special consideration
to them. TinkerCell provides three different ways for mod-
eling genetic networks, allowing the modeler to choose
which is most suitable. This builtin support for multiple
modeling frameworks reflects TinkerCell's underlying
modeling framework, which is independent of the mode-
ling technique.

Fractional saturation models
The first method of modeling gene regulatory networks
uses equilibrium assumption for transcription factor
binding [38]. Under this model, a single rate expression is
generated that captures the probability of the promoter
being in an active state. This rate expression assumes that
the transcription factor binding and unbinding are at
equilibrium. TinkerCell automatically generates the rate

expressions when a user connects transcription factors to
a gene. Figure 9 shows an oscillatory network constructed
using this framework.

Using parts to model genetic networks
The second method of modeling gene regulatory networks
involves the same equilibrium assumption mentioned
above. However, the entire gene is not represented as a
single item; it is split into a set of distinct parts. Each part
can be moved individually. The rate expression can be
described in terms of the promoter strength and RBS
strength, thus allowing a user to swap one part with
another, e.g. replace a weak RBS with a strong one. The
rate expression is defined in terms of the parts that are
directly upstream of the coding region, so swapping parts
would automatically update the rate expressions. Figure
10 shows the same network as the one in Figure 9 but
using distinct parts such as promoters, RBS, protein cod-
ing regions, and terminators.

Explicitly defining intermediate steps
A more elaborate way of describing gene regulatory net-
works is to define each reaction in the transcription and
translation process, including the movement of RNA
polymerase across the gene [47]. Creating such a model
would be nearly impossible without some sort of automa-
tion, and TinkerCell provides a function for automating
this process. While such models can avoid the use of equi-
librium assumptions, simulation can be time-consuming
due to the fact that each transcription and translation step
is comprised of multiple reactions. But this method can
often capture differences in behavior due to delays or sto-

Viewing DNA sequenceFigure 8
Viewing DNA sequence. In the screenshot above, several biological parts are connected together. However, the promoter
named "laczya" is regulating two other gene segments. The regulation is shown by the two dotted arrows. Since the promoter
is regulating two genes, it is implied that there are two copies of this promoter, one upstream of each gene that it regulates.
This is one method of showing regulation in an abstract way in the synthetic biology community [16]. The color coded circles
reflect the first and last parts in the displayed sequence. The individual sequences are loaded from RegulonDB [44] via a Python
script. The sequence attribute is only available for items of specific families, as described by the family tree of biological parts.
The sequence viewing window is provided by a small plug-in.
Page 11 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
chastic fluctuations in the intermediate stages of transcrip-
tion and translation [47].

List of functions provided through the C and Python
interface
While the visual side of TinkerCell provides the interface
for constructing a model, the analyses are carried out by C
and Python functions. All of the C programs use the
TC_api.h header file in order to interact with TinkerCell's
visual interface. New C programs can be added to Tinker-
Cell by building them as dynamic libraries. Python scripts
can be added to TinkerCell by listing the script name and
description in the "pythonscripts.txt" file. All C and
Python functions automatically run on separate threads,
allowing users to continue working as the program is run-
ning and utilizing the multi-core architecture of most
modern computers.

Fast simulators
The default simulators use existing C libraries that per-
form deterministic and stochastic simulation. For exam-
ple, the stochastic simulator uses a custom Gillespie [35]
C library available from evolvenetworks.sourceforge.net.
The C library accepts a user-defined stoichiometry matrix
and propensity function. The Gillespie simulator in Tink-
erCell takes the stoichiometry matrix and reaction rates
from the TinkerCell model and generates the C code con-
taining the stoichiometry matrix and propensity function.
This C code is compiled and linked against the existing
Gillespie algorithm library. The compiled C program per-
forms the simulation and outputs the result to Tinker-
Cell's plot window. Therefore, the simulation itself is
performed by a compiled C program, which means that
the simulation will be fast. Many conventional simulators
interpret the rate equation string and construct an internal

Simple method of modeling gene regulatory networksFigure 9
Simple method of modeling gene regulatory networks. Shown here is an oscillatory gene regulation network [9]. The
rate equations in this model assume that the transcription factor association and dissociation from the operator sites are at
equilibrium. Under this assumption, the fractional saturation model [38] can be used to determine the rate of production of
each gene product. The arrowheads are indicative of the type of reaction. For example, arrow from the genes to the proteins
have a special arrowhead indicating that it is a transcription reaction. The mRNA step can be included automatically if needed
from the context menu (mouse right-click).
Page 12 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
representation of the equation, which is used to compute
the rate value during every iteration; this can be an order
of magnitude slower than the compiled program. The
same idea is used by the deterministic simulation, which
uses the Sundials CVODE numerical integrator [34] to
perform the simulation. One drawback is that there is a
short time delay when compiling the code, which may be
more than the time to simulate simple networks. There-
fore, the speed gain due to this strategy is only visible for
larger networks and time consuming stochastic stimula-
tions. However, this demonstrates how existing C libraries

can be used without modification to create new simula-
tors for TinkerCell. The Tiny C Compiler [48] and GNU C
Compiler [49] are used to perform the compilation in MS
Windows and Unix based systems (including Mac),
respectively.

Further, the simulation programs use a function called
"createInputWindow" that is provided by the API. This
function allows C and Python programs to create simple
dialogs where the user can input parameters such as the
time for simulation or the type of simulation. There are

Synthetic Biology ExampleFigure 10
Synthetic Biology Example. Shown here is a screenshot of an oscillator constructed using positive and negative feedback.
The network design is the same as the one shown in Figure 9, but the difference is in the way the network is constructed. This
network is constructed by connecting parts together; the kinetics is based on the properties of the parts, thus loading parts
from a database would affect the network dynamics. This particular network has been constructed in E. coli and shown to oscil-
late [9]. Both genes, araC and lacI, are regulated by the same promoter, p1. The promoter is regulated by the proteins, AraC
and LacI, thus forming the feedback loop. The dotted connection between the promoter region and the two genes indicates
that the promoter p1 is situated upstream of both genes. Therefore, it is implied that there are two copies of the promoter in
the physical DNA. The dotted lines from the gene to the proteins represent multiple reactions, which is meant to capture
transcription, translation and protein folding stages, all of which contribute to the delay that is required for the oscillation. The
bottom left corner shows the sequence of one of the contiguous sequences of DNA, starting from the promoter region and
ending with the araC gene. A video demo showing how this network is constructed is available online at http://www.tinker-
cell.com under the "Demos" link.
Page 13 of 17
(page number not for citation purposes)

http://www.tinkercell.com
http://www.tinkercell.com

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
several such functions that allow C and Python programs
to interact with the user through visual interfaces.

Two-parameter steady state analysis
Among the functions included with TinkerCell are one-
parameter and two-parameter steady state analyses. Both
functions are loaded as C plug-ins, and they use the Sun-
dials CVODE integrator [34]. The two-parameter steady
state analysis plots a 3D surface plot, showing the value of
a target variable as a function of two parameters in the sys-
tem.

Visual inputs and outputs for C and Python programs
While C and Python programs are generally expected to
take command-line inputs and produce command-line
outputs, TinkerCell provides functions that allow C and
Python functions to interact with the user directly. Tinker-
Cell's C and Python API contain functions for displaying
dialogs with input tables. The outputs from these dialogs
are returned to the calling C or Python program. The C or
Python program can then use the information from the
model and the inputs from the user to perform some anal-
yses. As an output, the C and Python programs can change
the size or color of items in the model, circle items in the
model, or display numbers or strings next to items in the
model. At the same time, the programs may also print to
the TinkerCell command-line window.

Flux balance analysis
The flux balance analysis is one example where a C pro-
gram produces visual outputs. This particular program
uses a C++ plug-in to create a custom input window. The
C++ plug-in sets up the windows, tables, and buttons spe-
cifically for flux balance analysis. This window simply
serves as a user interface to a C program. It receives input
from the C++ plug-in and uses the LPSolve C library [36]
to do the optimization. The C program then changes the
width of the reaction arcs according to the result from
LPSolve. The optimal fluxes are also displayed next to the
reactions arcs (see Figure 3).

Sensitivity analysis
The sensitivity analysis is yet another example of visual
output (see Figure 3). The senstivity converts the Tinker-
Cell model into a PySCeS [25] model and uses PySCeS to
perform the analysis. The script then takes the PySCeS out-
put and colors the reactions in the network according to
their control coefficients.

Accessing E. coli genetic parts through RegulonDB
RegulonDB [44] houses a large set of promoters, tran-
scription factor binding sites, and RBS for the E. coli K12
strain. Through a Python script, a user can load sequences
and other information such as promoter type into Tinker-
Cell models. The script provides the user with a visual

interface for selecting the parts. The script also limits the
search by using known information. For example, if the
transcription factor LacI is repressing a promoter, then the
script will show only those binding sites that are targeted
by LacI (see Figure 4), allowing a user to automatically
generate the correct network using real parts. The Python
script is able to use the family information of objects in
the model to identify whether it is a promoter, RBS, cod-
ing region, or transcription factor. It would be impossible
to search for an appropriate part with this information in
the model, which demonstrates how the meta-data is use-
ful for database search.

Automated kinetics
One of TinkerCell's objectives is to combine the appeal of
visual network design with the flexibility of programming.
Automatic generation of kinetics is a good example where
this objective is met. There are three functions currently
included with Tinker-Cell that fall in this category. First,
the "Hill equation" Python function automatically gener-
ates the fractional saturation model for transcription reg-
ulation based on the activators and repressors of a
promoter. Second, the "binding reactions" C program
automatically generates all the intermediate stages of a
protein that form multiple complexes. Third, the "multi-
ple step process" function can automatically insert inter-
mediate steps into any given reaction. For example, if the
conversion of one molecule to another requires several
intermediate stages, this function can be used to automat-
ically generate those intermediates reactions. Gene regula-
tory networks are one of the areas where this function can
have additional relevance.

Automatically generate multiple conformations of a protein
Consider a simple situation of two small proteins binding
to a larger protein. In addition to the three proteins, there
are three other complexes. However, the number of possi-
ble complexes grows exponentially with the number of
binding proteins, thus modeling every complex explicitly
becomes impractical [50]. Generally, a modeler may
choose to ignore such details due to the difficulty in mod-
eling. TinkerCell offers a feature for automatically gener-
ating all necessary combinations. This feature is provided
by an existing C function that recursively generates all the
intermediate states and reactions. Integrating the existing
function into TinkerCell required three steps: obtaining
"Binding reactions" in the set of items selected by the user,
getting the stoichiometry matrix for those reactions, and
passing the stoichiometry matrix to the existing C func-
tion. The output from the C function is then used to mod-
ify the TinkerCell model.

Automatically generate intermediate stages of a multi-step process
Another automated feature is converting a single reaction
into a multi-step reaction. This feature was inspired by the
Page 14 of 17
(page number not for citation purposes)

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
fact that transcription can be understood as several indi-
vidual reactions, where each reaction is catalyzed by RNA
polymerase. Modeling genetic networks in this manner
can have significantly different outcomes in some situa-
tions [47]. It would be impossible for a user to draw hun-
dred of reactions for each transcriptional process in a
model. TinkerCell offers an automated function for con-
verting a single process into a multistep process. The vis-
ual model remains unchanged, but the selected reactions
will represent multiple reactions. While an alternative
approach might be delayed differential equations, this
approach allows other details such as leaks in transcrip-
tion and different delays based of the type of process and
stochastic simulations.

TinkerCell file format
TinkerCell stores the entire model as a single XML file,
which contains both the model information as well as the
graphical information. All the graphical objects in Tinker-
Cell are generated from XML files, and therefore they can
be saved as XML files. The model itself is stored as a set of
components and information associated with those com-
ponents. The information associated with each compo-
nent is a set of tables containing the parameters, reaction
rates, function definitions, events, DNA sequence, anno-
tation, and any other information pertaining to that com-
ponent in the model. The file format is therefore just a list
of objects, their family information, and data tables asso-
ciated with the objects. The datatables are labeled as
"parameters", "reaction rates", "text attributes", and so on.
The format is generic, which reflects TinkerCell's underly-
ing structure.

Example: dual feedback synthetic oscillator
Genetic circuits can be built in TinkerCell by snapping
genetic parts together. The regulatory rates will be auto-
matically assigned when promoters and RBS are con-
nected upstream of coding segments. Delays in
transcription and translation can be explicitly modeled by
introducing intermediate steps automatically. These fea-
tures are used effectively in the synthetic genetic circuit
shown in Figure 10, which is a dual feedback oscillator
that has been constructed in E. coli [9]. Video demonstra-
tions for the construction of this synthetic circuit and two
other circuits are also provided under the "Demos" link at
http://www.tinkercell.com. The videos are also available
through YouTube using "TinkerCell" as the search key-
word. The demonstration also shows how to load
sequences from RegulonDB.

Conclusion
We have described an application called TinkerCell that
combines the flexibility of programming with a visual
interface. In addition, TinkerCell provides the structure
for supporting standards and exchange of information.

TinkerCell is not intended to be yet another modeling
application. TinkerCell is an application for bringing
together models, information, and algorithms. Therefore,
it serves a host to C and Python programs that provide
functions useful for biological engineering. The API has
been demonstrated to be very versatile because numerous
C and Python programs and packages have been readily
integrated into TinkerCell.

The modular modeling framework of TinkerCell can serve
two purposes. The first is to aid in the engineering process
by allowing one modeler to use existing modules to
design new networks. The second purpose is that mode-
ling with modules can be used to explore the possible
implication of functional modules in biology. It is an
open question whether a module's functionality is
retained when it is placed in different situations [39].
Answers to such questions will be highly relevant to syn-
thetic biology, since the ability to construct one system
using another is a central theme in engineering. Tinker-
Cell can serve as a platform for testing how different mod-
ules behave and what types of modules are able to retain
their functional identity. The flexible modeling frame-
work provides such experiments to be carried out at differ-
ent levels of detail. For example, some issues regarding
modularity may not be visible when using fractional satu-
ration models of gene regulation, but they may be evident
when the reactions are modeled explicitly. Since Tinker-
Cell provides different ways of modeling, it is suitable for
studying such questions.

Work in progress
TinkerCell is continually being updated. In particular, we
are currently working in four areas, which include:

• better use of community standards and tools such as
the Systems Biology Workbench [19,22,51] and the
Synthetic Biology Open Language standards [18]

• addition of more analysis functions from PySCeS
[25] such as bifurcation analysis and parameter scans

• better integration between the Antimony scripting
language [32] and the visual representation to allow
text and graphical views to be easily interchanged

• the ability to build models with poorly defined parts.

The last feature needs more explanation. Parameters
describing the complete dynamics of a given biological
part are rarely known. To address this reality, TinkerCell
would be able to define parameters with an upper and
lower limit or a standard deviation value, indicating the
uncertainty of the parameter value. The ability to include
uncertainly measures on parameters will allow us to
Page 15 of 17
(page number not for citation purposes)

http://www.tinkercell.com

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
develop algorithms to determine the robustness of a vari-
ety of designs in the face of parameter variation. The most
robust designs could then be selected for construction in
vivo.

Integrating future synthetic biology standards [18] would
lead to better database integration, which would allow
TinkerCell to provide some useful features for experimen-
talists. These include:

• ability to list parts that are compatible with each
other, where compatibility includes physical assembly
as well as known interferences or cross-talk between
the parts

• conveniently providing references and user ratings
when they are available for parts

• estimating standard measurements [16] on parts
from experimental data and submitting the informa-
tion back to a database

The above features are being developed along with data-
base efforts.

Platform availability
The TinkerCell application can be successfully compiled
and run on most major platforms (Windows, Mac, Linux).
Installers are currently available for Windows systems.
Installers for Mac will be available in the near future.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
DC was the primary designer and developer for the Tink-
erCell application. FTB and DC worked on a similar
project, Athena [21], which served as a starting point for
TinkerCell. HMS provided critical feedback and sugges-
tions during the development of TinkerCell.

Additional material

Acknowledgements
This work was partly funded by the National Science Foundation (ID
0527023- FIBR) and Microsoft's Computational Challenges in Synthetic
Biology 2006 Award. Bergmann was supported by a grant from the NIH/
NIGMS (GM081070).

References
1. Hasty J, Isaacs F, Dolnik M, McMillen D, Collins J: Designer gene

networks: Towards fundamental cellular control. Chaos: An
Interdisciplinary Journal of Nonlinear Science 2001, 11:207.

2. Isaacs F, Hasty J, Cantor C, Collins J: Prediction and measure-
ment of an autoregulatory genetic module. Proceedings of the
National Academy of Sciences 2003, 100(13):7714-7719.

3. Ozbudak E, Thattai M, Lim H, Shraiman B, van Oudenaarden A:
Multistability in the lactose utilization network of
Escherichia coli. Nature 2004, 427(6976):737-740.

4. Endy D: Foundations for engineering biology. Nature 2005,
438:449-453.

5. Purnick P, Weiss R: The second wave of synthetic biology: from
modules to systems. Nature Reviews Molecular Cell Biology 2009,
10(6):410-422.

6. Elowitz M, Leibler S: A synthetic oscillatory network of tran-
scriptional regulators. Nature 2000, 403(6767):335-338.

7. Gardner T, Cantor C, Collins J: Construction of a genetic toggle
switch in Escherichia coli. Nature 2000, 403(6767):339-342.

8. Entus R, Aufderheide B, Sauro H: Design and implementation of
three incoherent feed-forward motif based biological con-
centration sensors. Systems and Synthetic Biology 2007,
1(3):119-128.

9. Stricker J, Cookson S, Bennett M, Mather W, Tsimring L, Hasty J: A
fast, robust and tunable synthetic gene oscillator. Nature
2008, 456(7221):516-519.

10. Tigges M, Marquez-Lago T, Stelling J, Fussenegger M: A tunable syn-
thetic mammalian oscillator. Nature 2009, 457(7227):309-312.

11. Tabor J, Salis H, Simpson Z, Chevalier A, Levskaya A, Marcotte E,
Voigt C, Ellington A: A Synthetic Genetic Edge Detection Pro-
gram. Cell 2009, 137(7):1272-1281.

12. Lee S, Chou H, Ham T, Lee T, Keasling J: Metabolic engineering of
microorganisms for biofuels production: from bugs to syn-
thetic biology to fuels. Current Opinion in Biotechnology 2008,
19(6):556-563.

13. Anderson J, Clarke E, Arkin A, Voigt C: Environmentally Control-
led Invasion of Cancer Cells by Engineered Bacteria. Journal
of Molecular Biology 2006, 355:619-627.

14. Heinemann M, Panke S: Synthetic biology-putting engineering
into biology. Bioinformatics 2006, 22(22):2790-2799.

15. Shetty RP, Endy D, Knight TFJ: Engineering Bio-Brick vectors
from BioBrick parts. J Biol Eng 2008, 2:5.

16. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de
Mora K, Glieberman AL, Monie DD, Endy D: Measuring the activ-
ity of BioBrick promoters using an in vivo reference stand-
ard. J Biol Eng 2009, 3:4.

17. Galdzicki M, Chandran D, Nielsen A, Morrison J, Cowell M, Grünberg
R, Sleight S, Sauro H: BBF RFC 31: Provisional BioBrick Lan-
guage (PoBoL). 2009.

18. Synthetic Biology Open Language [http://openwetware.org/
wiki/The_BioBricks_Foundation:Standards/Technical/Exchange]

19. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A,
Bornstein B, Bray D, Cornish-Bowden A, et al.: The systems biol-
ogy markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics
2003, 19(4):524-531.

20. Lloyd C, Halstead M, Nielsen P: CellML: its future present and
past. Progress in Biophysics And Molecular Biology 2004, 85:433-450.

21. Chandran D, Bergmann F, Sauro H: Athena: Modular CAM/CAD
Software for Synthetic Biology. eprint arXiv: 0902.2598 2009.

22. Bergmann F, Sauro H: SBW-a modular framework for systems
biology. Proceedings of the 38th conference on Winter simulation, Win-
ter Simulation Conference 2006:1637-1645.

23. Funahashi A, Morohashi M, Kitano H, Tanimura N: CellDesigner: a
process diagram editor for gene-regulatory and biochemical
networks. Biosilico 2003, 1:159-162.

24. Levine M, Davidson E: Gene regulatory networks for develop-
ment. Proceedings of the National Academy of Sciences 2005,
102(14):4936-4942.

Additional file 1
Plug-in descriptions and sample Python scripts. A short description of
some of the main plug-ins that are available with TinkerCell and a few
short scripts showing how the Python language can be used to interact with
TinkerCell's visual interface.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1754-
1611-3-19-S1.pdf]
Page 16 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1754-1611-3-19-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16306983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19461664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19461664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18971928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18971928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19148099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19148099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19563759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19563759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18996194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18996194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18996194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16954140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16954140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18410688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18410688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19298678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19298678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19298678
http://openwetware.org/wiki/The_BioBricks_Foundation:Standards/Technical/Exchange
http://openwetware.org/wiki/The_BioBricks_Foundation:Standards/Technical/Exchange
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808

Journal of Biological Engineering 2009, 3:19 http://www.jbioleng.org/content/3/1/19
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

25. Olivier B, Rohwer J, Hofmeyr J: Modelling cellular systems with
PySCeS. Bioinformatics 2005, 21(4):560-561.

26. Goler J: BioJADE: A Design and Simulation Tool for Synthetic
Biological Systems. Technical report 2004.

27. Mallavarapu A, Thomson M, Ullian B, Gunawardena J: Programming
with models: modularity and abstraction provide powerful
capabilities for systems biology. Journal of The Royal Society Inter-
face 2009, 6(32):257-270.

28. Hill A, Tomshine J, Weeding E, Sotiropoulos V, Kaznessis Y: SynBi-
oSS: the synthetic biology modeling suite. Bioinformatics 2008,
24(21):2551.

29. Ginkel M, Kremling A, Nutsch T, Rehner R, Gilles E: Modular mod-
eling of cellular systems with ProMoT/Diva. Bioinformatics
2003, 19(9):1169-1176.

30. Marchisio M, Stelling J: Computational design of synthetic gene
circuits with composable parts. Bioinformatics 2008,
24(17):1903.

31. Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles E: PROMOT:
modular modeling for systems biology. Bioinformatics 2009,
25(5):687.

32. Smith L, Bergmann F, Chandran D, Sauro H: Antimony: A modular
model definition language. Bioinformatics 2009,
25(18):2452-2454.

33. Registry of Standard Biological Parts [http://partsregistry.org/]
34. Hindmarsh A, Brown P, Grant K, Lee S, Serban R, Shumaker D,

Woodward C: SUNDIALS: Suite of nonlinear and differential/
algebraic equation solvers. ACM Transactions on Mathematical
Software (TOMS) 2005, 31(3):363-396.

35. Gillespie D, et al.: Exact stochastic simulation of coupled chem-
ical reactions. The Journal of Physical Chemistry 1977, 81:2340-2361.

36. Berkelaar M, Eikland K, Notebaert P, et al.: lpSolve: Open Source
(Mixed-Integer) Linear Programming System. Eindhoven U. of
Technology .

37. Hagberg A, Schult D, Swart P: NetworkX Library developed at
the Los Alamos National Laboratory Labs Library (DOE) by
the University of California. 2004 [https://networkx.lanl.gov].

38. Shea M, Ackers G: The OR control system of bacteriophage
lambda. A physical-chemical model for gene regulation. J Mol
Biol 1985, 181:211-30.

39. Del Vecchio D, Ninfa A, Sontag E: Modular cell biology: retroac-
tivity and insulation. Molecular Systems Biology 2008, 4:161-177.

40. Sauro H: Modularity defined. Molecular Systems Biology 2008,
4:166-168.

41. Qt - a cross-platform application and UI framework [http://
www.qtsoftware.com/products/]

42. Jones E, Oliphant T, Peterson P, et al.: SciPy: Open source scien-
tific tools for Python. 2001 [http://www.scipy.org].

43. Sauro H, Penrodyn P: A Biochemical "NAND" Gate and
Assorted Circuits. In Modern Trends in Biothermokinetics: Proceed-
ings of the Fifth International Meeting Held in Bordeaux-Bombannes,
France, September 23-26. 1992 Plenum Publishing Corporation;
1993:133.

44. Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A,
Penaloza-Spinola M, Contreras-Moreira B, Segura-Salazar J, Muniz-
Rascado L, Martinez-Flores I, Salgado H, et al.: RegulonDB(version
6. 0): gene regulation model of Escherichia coli K-12 beyond
transcription, active(experimental) annotated promoters
and Textpresso navigation. Nucleic Acids Research 2008,
36(1):120-124.

45. Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A,
Demir E, Wegner K, Aladjem M, Wimalaratne S, et al.: The Systems
Biology Graphical Notation. Nature Biotechnology 2009,
27(8):735-741.

46. BioBrick Open Graphical Language [http://openwetware.org/
wiki/Endy:Notebook/BioBrick_Open_Graphical_Language]

47. Kosuri S, Kelly J, Endy D: TABASCO: A single molecule, base-
pair resolved gene expression simulator. BMC bioinformatics
2007, 8:480.

48. Bellard F: TCC: Tiny C compiler. [http://fabrice.bellard.free.fr/
tcc].

49. GCC, the GNU Compiler Collection [http://gcc.gnu.org/]
50. Blinov M, Faeder J, Goldstein B, Hlavacek W: BioNet-Gen: soft-

ware for rule-based modeling of signal transduction based on
the interactions of molecular domains. Bioinformatics 2004,
20(17):3289.

51. Sauro H, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano
H: Next Generation Simulation Tools: The Systems Biology
Workbench and BioSPICE Integration. Omics A Journal of Inte-
grative Biology 2003, 7:355-372.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15454409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15454409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18757873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18757873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12801880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18579565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18579565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19147665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19147665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19578039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19578039
http://partsregistry.org/
https://networkx.lanl.gov
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3157005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3157005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18277382
http://www.qtsoftware.com/products/
http://www.qtsoftware.com/products/
http://www.scipy.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19668183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19668183
http://openwetware.org/wiki/Endy:Notebook/BioBrick_Open_Graphical_Language
http://openwetware.org/wiki/Endy:Notebook/BioBrick_Open_Graphical_Language
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18093293
http://fabrice.bellard.free.fr/tcc
http://fabrice.bellard.free.fr/tcc
http://gcc.gnu.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15217809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14683609
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Existing computational tools

	Results and Discussion
	Features
	Modeling and analysis
	Third-party functions and scripts
	Synthetic biology
	Modularity
	Plug-in interface and Core library

	Methods
	The Core library
	Plug-ins and flexible modeling framework
	C and Python interface
	Modular design of networks
	Genetic modules
	Modules as composite parts

	Support for standards
	Parts ontology
	Reactions ontology
	Using ontologies in models
	Visual formats

	Genetic networks
	Fractional saturation models
	Using parts to model genetic networks
	Explicitly defining intermediate steps

	List of functions provided through the C and Python interface
	Fast simulators
	Two-parameter steady state analysis
	Visual inputs and outputs for C and Python programs
	Flux balance analysis
	Sensitivity analysis
	Accessing E. coli genetic parts through RegulonDB

	Automated kinetics
	Automatically generate multiple conformations of a protein
	Automatically generate intermediate stages of a multi-step process

	TinkerCell file format
	Example: dual feedback synthetic oscillator

	Conclusion
	Work in progress
	Platform availability

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

