
Towards Coherent Image Space Stylization of Animated 3D Shapes

Simon Breslav
MSc Report

Department of Computer Science
University of Toronto

May 2010

Figure 1: A sequence of a horse running, demonstrating a highly deformable shape being rendered in a stippling style.

Abstract

We describe a rendering technique for creating animations of
3D shapes in a range of non-photorealistic styles based on 2D
patterns that resemble hand-made drawings, prints, and paintings.
Producing 3D animations of such styles presents a challenge:
ensuring that the 2D patterns follow 3D motions while preserving
their 2D appearance are conflicting goals. Our solution is to use
texture synthesis in image space, optimizing a simple objective
function that trade-off error of both 2D structure of the example
pattern, and matching 3D motion. This method provides a good
solution for wide variety of styles, ensures the preservation of 2D
characteristics of the pattern, provides a good temporal coherence,
and matches desired orientations for anisotropic patterns.

1 Introduction

Non-photorealistic renderings of 3D scenes depict the computer-
generated geometry as an artistic creation, that resembles hand-
made drawings, prints, or paintings. As with artistic imagery, dif-
ferent rendering styles help convey distinct feelings to the viewer,
and the perception of tone, shape and material can be enhanced by
an expressive, non-photorealistic rendering (NPR). However, hand-
made artwork is typically confined to the 2D static space of a can-
vas. Extending an artistic style to 3D dynamic scenes poses the
problem of illustrating the 3D movement of the scene, while main-
taining the 2D characteristics of the style. In the current approach,
we aim to satisfying these constraints for a large variety of styles.
This imposes a set of conflicting goals for our method:

1. The 2D patterns (strokes, pigments, etc.) that convey the
artistic style should have a constant size and density in the im-
age. This ensures that the style preserves its 2D appearance,
and does not appear directly drawn on the 3D objects.

2. The 2D patterns should follow the motion of the 3D objects
they depict.

As well as these desired properties:

• Often these 2D patterns, (strokes in particular) are organized
to follow the features of the 3D shapes that make up the scene.
This helps convey a better sense of 3D shape to the viewer
[Girshick et al. 2000]. So another optional constraint can be

to match a desired orientation defined on the surface of the
shape.

• Since many of the target styles are a particularly designed to
convey tone (i.e.hatching, halftoning), another constraint is
that resulting stylized image should match the perceived tone
of the underlying 3D shape.

• To support a wide range of styles, our method should not rely
on characteristics typical to a particular style.

To comply with these constraints, our solution is to use example-
based Anisotropic Texture Synthesis [Ying et al. 2001; Lefebvre and
Hoppe 2006] in image space to generate the stylized rendering of
the shapes. We formulate the method as a minimization problem
with two main terms, the Texture term and the Coherence term.
The Texture term guarantees that the structural content of the style
is preserved when each still frame is computed, and the Coherence
term ensures that a given frame is consistent with previous or next
frames.

Our main contribution is, therefore, to demonstrate that image
space example-based texture synthesis approach for rendering non-
photorealistic patterns is a flexible way to satisfy all our objectives
for a large variety of styles with a single unified policy, while sup-
porting shape deformations and any camera motions (translation,
rotation, and zoom).

2 Related Work

A number of previous techniques focused on representing 3D
animated scenes with non-photorealistic styles.

To solve the contradiction between the 2D characteristics of a style
and the necessity of following a 3D motion, stroke-based rendering
methods [Hertzmann 2003] represent the style as a collection of
stroke marks. The stroke appearance is rendered in 2D, but each
stroke is attached to points on the 3D surface, and thus follow the
scene motion. The decomposition of a style into strokes requires
capturing the stroke particularities, and has given rise to methods
that focus on one individual style: painterly [Meier 1996; Snavely
et al. 2006], watercolor [Bousseau et al. 2006], and stippling [Pastor
et al. 2003; Vanderhaeghe et al. 2007]. A general method that
captures many artistic styles would be difficult to create. Also,
stroke-based rendering requires the blend-in/blend-out of appearing

and disappearing elements. Texture synthesis on the other hand,
allows for greater style diversity and avoids blending by texture
‘morphing’ of one element into another.

An alternative to stroke-based methods is texture mapping, in which
the style is represented by a texture, and treated as a continuous
‘data’. Two possibilities exist when using texture: either attach the
stylization texture directly onto the 3D objects (object-space texture
mapping), or keep the texture in 2D and rely on 2D transformations
to suggest the 3D motion (screen-space texture mapping).

When considering the two conflicting constraints, matching 3D
motion while preserving 2D characteristic of the pattern, object-
space methods favor matching 3D motion over the 2D appear-
ance of the style. Approaches like [Klein et al. 2000] and [Praun
et al. 2001] perfectly follow the 3D animation, but the style tex-
ture is severely distorted by the perspective projection. Bénard
et al. [2009] achieves a uniform image space scale of the object-
space mapped style by combining different frequencies of the tex-
ture. Because the method blends together several texture frequen-
cies, it is aimed at self-similar textures, and not suited for more
structured textures. Moreover, the method does not allow the tex-
ture elements to be oriented along the surface; therefore, important
shape cues, such as the surface curvature, cannot be represented.

The opposite approach, that guarantees the preservation of 2D
characteristics, at the expense of temporal artifacts, is taken by
screen-space texture mapping methods. For the specific case of
line-art illustrations, [Kim et al. 2008] use screen-space principal
curvature directions to illustrate 3D shape in dynamic and specular
scenes, but their method is not equipped with explicit handling of
3D motion. [Cunzi et al. 2003] approximate the camera 3D motion
with 2D transformations of the texture; camera translations in depth
are represented with infinite zoom method that maintains constant
the size of the texture. Because the motion is attached to the camera,
and not the scene, this method works best in the limited case of a
static scene in which all objects lie at roughly the same distance
from the camera.

[Coconu et al. 2006] extract a similarity transform by tracking a
single 3D point and orientation vector on the surface of ”high level
primitives” fit to the geometry. Similarly, [Breslav et al. 2007]
uses a collection of 3D sample points and weighted least-squares
optimization to compute a similarity transform to approximate the
3D motion. With both [Coconu et al. 2006] and [Breslav et al.
2007], the movement of large areas of the surface is approximated
with same 2D transformation, leading to sliding effects for extreme
motion. Also, both methods cannot follow a given orientation
field as our method can. To minimize this sliding [Breslav et al.
2007] segments the shape into patches and find a transform for
the individual patch, then blends the pattern at batch boundaries.
This does work well for some patterns, but blending may not work
for all target patterns, also, distracting asynchronous level of detail
transitions are possible.

Bousseau et al. [2006] and Kaplan and Cohen [2005] also describe
methods for achieving a temporally coherent dynamic canvas.
These methods are automatic and account for camera motion as
well as objects that move independently. Both methods track seed
points on 3D surfaces and use them to generate (each frame) a
canvas texture by joining small pieces of texture that follow the seed
points. These methods work well with small-scale, unstructured
patterns like canvas and paper textures, but cannot preserve regular
or large-scale patterns like hatching and halftone screens. Eissele
et al. [2004] propose a similar strategy for 2D halftone patterns
applied to 3D scenes. Although this method shares some similarity
to ours, the method exhibits severe temporal artifacts, and does not
support oriented patterns or different styles.

Our approach is inspired by work in the area of texture synthesis.
Great advancements have been achieved in the area in the recent
years, resumed in the survey of Wei et al. [2009]. We were
particularly influenced by the works of [Kwatra et al. 2007] and
[Narain et al. 2007] on texturing fluids. Whereas their methods
synthesize textures in object space, we address the specific NPR
problem of maintaining a 2D aspect for the synthesized texture
during the entire 3D animation. Work on Anisotropic Texture
Synthesis also resembles our approach, but previous methods either
dealt with static images [Wang et al. 2004; Taponecco et al. 2006],
or synthesised the texture directly on the surface of 3D shapes
[Ying et al. 2001; Lefebvre and Hoppe 2006; ?; ?]. Our approach,
on the other hand, considers animated 2D shapes, and targets a
different class of patterns the most texture synthesis work. While
there has been work that demonstrated using texture synthesis to
generate non-photorealistic images (i.e.[Hertzmann et al. 2001;
Wang et al. 2004]), to our knowledge no work has yet done so for
non-photorealistic animations.

3 Overview

Our method is broken into three stages. In the first stage, Fields
and Data Extraction (see Section 4), we project all the necessary
information from the 3D shape into images space. The shape infor-
mation we process consists of: the tone (i.e. a diffuse rendering of a
3D shape), the mask (that indicates the area occupied by the shape),
the edge map (that captures the view-dependent shape discontinu-
ities and creases), the occlusion/dis-occlusion map, the orientations,
and the backwards and forward optical flow fields. Figure 2 illus-
trates the entire set of extracted data. During the first stage, we
also pre-process the Example Pattern P that will be used for tex-
turing the shape. From P , we extract three features: the Distance
To Edges, Image Gradients, and the Orientations (Figure 4) and we
project them into the Appearance-Space P̃ proposed by [Lefebvre
and Hoppe 2006].

In the second stage (see Section 5) all the data, fields, and the Ex-
ample Pattern from the first stage are used by our multi-scale Tex-
ture Synthesis algorithm that produces either a halftone screen or a
layer of paint. Our method is formulated as an optimization prob-
lem, where we minimize a texture energy function that measures
the extent to which synthesized image deviates from both Example
Pattern, and from the advected previous frame.

As a final stage (see Section 6), we apply various post-processing
operations, such as halftone thresholding, paper medium simula-
tion, tone correction, and non-uniform shape boundary erosion.

4 Fields and Data Extraction

Given a 3D shape, we output for each animation frame, the 2D
image of tone, mask, feature lines, occlusion/dis-occlusion map,
orientations, and backwards and forward optical flow fields (See
Figure 2 for a frame of this data). Most of this data is rendered
at multiple scales (i.e 720x480, 360x240, 180x120) to assist our
multi-scale Texture Synthesis algorithm. Re-rending our 3D scene
on multiple scales give us higher precision then down-sampling the
information, especially in cases such as optical flow flow fields.

4.1 Feature Lines

For our feature lines (See Figure 2 (c)) we use silhouettes and crease
edges. These feature lines are used first during our texture synthesis
process to stop the texture from crossing occlusion boundaries, and
then to highlights discontinuities in our final result.

(a) Tone (b) Mask (c) Feature Lines (d) Optical Flow (e) (Dis-)Occlusions (f) Orientations

Figure 2: Data Extracted from 3D. (d) Green: Dis-occlusions (were occluded in the last frame), Red: Occlusions(will be occluded in the
next frame), Yellow: Visible in previous and next frame (e) Orientations based on derivative of UV coordinates (f) Red: Backwards Optical
Flow(where was the vertex in the last frame), Blue: Forward Optical Flow(where will the vertex be in the next frame).

Silhouetts are determined using algorithm described in Markosian
et al. [1997]. To find creases, every edge of the 3D mesh is visited
and is labeled a creases if dot product between normals of two
adjacent faces exceeds a threshold (i.e. 0.5). All feature lines are
drawn using GL line strips.

4.2 Optical Flow

The optical flow is computed at each vertex on the mesh. Vertex is
project into image space in each frame, and pixel difference of the
projected location between adjacent frames is used. This is done
both for forward and backwards frames. Barycentric interpolation
is then used to get per-pixel flow. See Figure 2 (d) for a quiver plot
of the optical flow field at a given frame.

4.3 (Dis-)Occlusion Map

Occlusion and Dis-occlusion Maps are used as a optical flow
reliability map. If a vertex is visible in a previous frame, it’s
backwards optical flow is reliable, if it will be visible in the next
frame, then it’s forward optical flow is reliable. Similarly to optical
flow, barycentric interpolation is used for getting per-pixel values
from per-vertex visibility information. In Figure 2 (e) red denotes
pixels that will be occluded in the next frame, green marks dis-
occluded pixels (pixels that were occluded in the last frame), and
yellow shows pixels that were visible in last frame, and will be
visible in the next. The actual visibility is done using ”ID image”
visibility method described in Kalnins et al. [2002].

4.4 Orientations

Our method supports arbitrary orientations, however to achieve
good looking results, spatially and temporary smooth fields without
too many singularities or orientation flips are desired. To achieve
this we experiment with following fields:

Constant Uniform 2D orientation may be useful for abstracting
the shape (i.e. Artist’s quick sketching at 45o). Using these
uniform orientations does pose a challenge, if the camera ro-
tates or the shape is deformed, there will be a disconnect be-
tween local orientation change of the region and the constant
orientations. This disconnect introduces artifacts to the tem-
poral and spatial coherence in the final textured results. Nev-
ertheless, in many cases our method handles these difficulties
with satisfactory results.

UV Based Given a 3D shape with UV parametrization, we can use
the derivative of UV coordinates at each vertex as our orien-
tation. To find this orientation, we first calculate UV coor-
dinate derivative at each face, with respect to ~x, ~y, ~z. Then
we take the average of all the neighbouring face directions
projected into local coordinates of the vertex defined by the

~b1 = ~n×(1, 1, 0), ~b2 = ~n× ~b1, where ~n is the vertex normal.
The resulting 3D vector is then projected into image plane to
get our final 2D orientation. Using orientations extracted from
UV coordinates allows us to have necessary control to define
orientations where automatic methods fail. For example, prin-
cipal curvature directions are not defined on planer regions.
Also, it’s worth noting that requirements for the quality of the
parametrization for orientation extraction are a bit different
then for general purpose UV parametrization. For purposes
of traditional texture mapping stretching of UV coordinates is
undesired, in our case, we are only concerned with orientation
quality, thus excessive stretching is not a factor.

View-Dependant As described in [Markosian et al. 1997] we can
used directions defined by the cross product of local surface
normal and the ray from the camera. While these orientations
create singularities when the surface normal and the camera
ray are parallel, the resulting orientations are quite smooth.
Since these orientations are view dependant they are not tem-
porally coherent with respect to shape deformation and will
slide on the surface when the camera rotates. Nevertheless, as
with constant orientations in certain styles our method handles
these difficulties with satisfactory results.

In the future work we would like to take advantage of large body of
work that use automatic orientation generation on the surfaces (i.e.
[Hertzmann and Zorin 2000], [Turk 2001], [Wei and Levoy 2001],
[Praun et al. 2001], [Fisher et al. 2007], [Xu et al. 2009]).

4.5 Example Pattern Pre-Processing

(a) Example Pattern P (b) Coordinates u

Figure 3: Input Example Pattern

As noted by Durand et al. [2001], it is desirable for the halftone
screen to have flat histogram. Thus, as a first step to preparing
our example patterns, we apply Contrast-limited adaptive histogram
equalization (CLAHE)[Zuiderveld 1994] to our patterns. See

(a) (b) (c)

Figure 4: Top Row: 6 channels of Ṕ (a) Distance To Edges (1
channel) (b) Image Gradient (2 channel) (c) Orientations (3 chan-
nel). Middle Row: First 3 channels of P̃ when the corresponding
feature (top row) is added. Bottom Row: Channels 4-6 of P̃ .

Figure 5 for result of applying this equilibration, as well differences
in the results of the synthesis, and the thresholding.

Since most of our example patterns are grayscale, in many cases
we find it useful to extract certain features to improve results of the
synthesis. All the extracted features are combined with P to be
used as a new example pattern, Ṕ . Here is a list of features that we
optionally add:

Distance To Edges We extract edges using Canny Edge detection
[Canny 1987], then apply Euclidean distance transform [Breu
et al. 1995](see top row of Figure 4 (a).) This feature is
consistent with previous work such as Lefebvre et al. [2006],
although may not be that descriptive on the dense edges as
seen in example texture used in Figure 4.

Image Gradient We extract image gradient, ∂P
∂x

, ∂P
∂y

, using Sobel
operator.

Orientations To distinguish areas of different orientation, we use
2D Structure Tensor, also referred to as the ”second-moment
matrix”, which is commonly used for corner detection [Harris
and Stephens 1988]. For our feature we use the values of this
matrix, (∂P

∂x
)2, ∂P

∂x
∂P
∂y

, (∂P
∂y

)2 as additional three channels
(see top row of Figure 4 (c)).

(Note, if P is not grayscale, we convert it to grayscale before
extracting these features.)

To increase the density of the information and to allow for the use
of smaller neighbourhoods we project out pattern combined with
all the features, Ṕ , into Appearance-Space [Lefebvre and Hoppe
2006], P̃ . To do so, let the Gaussian-weighted 5x5 neighbourhoods
of Ṕ define a maximum of 175D (for grayscale patterns, and 225D
for color patterns) set of points. We then reduce the dimensionality
of these points using PCA to obtain a 5D to 8D points, where each
point corresponds to a pixel in P , and will be used as our new

(a) Original Pattern (b) Equilibrated Pattern

Figure 5: Pattern Histogram Equilibration. Row 1: Example
Pattern. Row 2: Histogram of intensities. Row 3: Resulted Halftone
Screen. Row 4: Thresholded Result.

example pattern for synthesis, P̃ .

As in Lefebvre et al. [Lefebvre and Hoppe 2005] we associate
Gaussian Stack P̃0, P̃1, ..., P̃L with our Example Pattern to work
with our multi-scale texture synthesis.

5 Approach

After all the data has been extracted from the 3D, we proceed to
synthesize our pattern in images space. Our algorithm is inspired
by existing Texture Synthesis methods [Ying et al. 2001; Ashikhmin
2001; Lefebvre and Hoppe 2006; Narain et al. 2007]. The synthesis

process involves creating an an image S, or more precisely an
image pyramid SL, SL−1, ..., S0 (Figure 9 (e-h)) in coarse-to-fine
order (typically L = 2 in all our examples, resulting 3 pyramid
levels). Each pixel in S stores the coordinates of the Example
Pattern (Figure 3). Thus, a color at a given pixel i, in the result
image is given by P [S[i]], although please see Section 5.3 for
details about a better mapping function that hides patch boundary
seams.

5.1 Energy Function

The output texture is generated by minimizing an energy function
Etexture(s; p) which measures the similarity of each n×n patch s
in the result image with a similar n×n patch p in the input Example
Pattern. For temporal coherence, we minimize an energy function
Ecoherence(s; s′), which measures similarity of each n × n patch
s in the current frame, with the corresponding n×n patch s′ in the
previous frame. The net energy function for an image patch s is:

E(s) = αEtexture(s; p) + βEcoherence(s; s′) (1)

α and β are user specified weights to manipulate dominance of each
term (usually just 1.0 and 1.0). Specifically, the two terms take the
following form:

Etexture(s; p) = ‖Ĩ(s)− Ĩ(p)‖2 (2)

Ecoherence(s; s′) = ‖Ĩ(s)− Ĩ(s′)‖2 (3)

Where Ĩ refers to the feature pixels associated with a patch. The
total energy over all patches

∑
S E(s), can be minimized by an

iterative approach; we refer the reader to previous work for details
[Kwatra et al. 2005; Kwatra et al. 2007; Han et al. 2006; Narain
et al. 2007]. We do not perform such global optimization, and
just minimize error locally. For Anisotropic Synthesis, our patches
have to be deformed to align with the orientation field (see example
field in Figure 2 (f)), we refer the reader to previous work for
details [Ying et al. 2001; Lefebvre and Hoppe 2006; Eisenacher
and Lefebvre 2008]. In case of isotropic synthesis, patches don’t
have to be deformed, and we perform regular patch sampling.

5.2 Optimization Algorithm

We aim at generating a resulting image by following a sequence of
operations: first, we initialize the coarse scale of this result pyramid
by covering the image with overlapping patches (Section 5.2.2)
followed by a step of correction (Section 5.2.4). Then, for each
remaining pyramid level, we perform upsampling (Section 5.2.3)
and correction (Section 5.2.4).

This is performed for each frame, where Etexture(s; p) is used to
evalute texture error for each patch s, and Ecoherence(s; s′) for
patches s that were not occluded in the last frame, Dis-Occlusions
Map (see Figure 2 (e)) is used to decide if coherence term should
be used or not.

5.2.1 Bi-Directional Synthesis Loop

When the object rotates around an axis that is parallel to the film
plane (e.g. Figure 7), in each frame there will be a sliver of pixels
that were occluded in the last frame. Because this sliver is near an
edge, only certain portion of the patch will be valid for comparison,
thus having a less descriptive match. In the subsequent frames,
as that area becomes less foreshortened and grows, these local
minimums might propagate and create undesired artefacts.

To combat this problem, we introduce a Bi-Directional Loop that
take advantage of the fact that we extract both forward and back-
wards optical flow from 3D. See Figure 7 for effects of using Bi-
Directional Loop.

(a) Frame 20 (b) Frame 30 (c) Frame 40

Figure 7: Top Row: Regular Synthesis Loop. Bottom Row: Bi-
Directional Loop.
First we extract an addition piece of information from 3D, Delayed
Dis-Occlusions Map, see Figure 8 for a couple of example frames.
To create this Delayed Dis-Occlusions Map, instead of updating
Dis-Occlusions each frame, pixels that were visible last frame, are
only updated in every x frames (we use around x = 20). In
every frame other then the update frame, we invalidated pixels in
subsequent frames if they become dissociated.

(a) Frame 2 (c) Frame 10 (d) Frame 15

Figure 8: Delayed Dis-Occlusions. Black indicates the point was
visible in in current frame and to last update frame.
To Use Delayed Dis-Occlusions instead of regular Dis-Occlusions,
we modify the synthesis loop as follows:

Step 0 Fill Frame 1 only using Etexture(s; p) (same as before).

Step 1 Synthesize going forward in time, only in areas where
Delayed Dis-Occlusions is valid (Black in Figure 8). For all
these pixels we can use Etexture(s; p) and Ecoherence(s; s′).

Step 2 In Frame x fill the whole shape, some areas may only use
Etexture(s; p).

Step 3 Go backwards x frames in time; using forward optical
flow field instead of backwards, and fill in unfilled areas.
Again, both Etexture(s; p) and Ecoherence(s; s′) will be
used, except now the coherence term point forward in time
rather then backwards.

Step 4 Skip x frames forward and Go to Step 1

(a) Coords (a) No Blending (b) 3x3 (c) 5x5 (c) 7x7

Figure 6: Coordinate Blending.

5.2.2 Initialization

To initialize the coarse pyramid scale, we extend Efros and Free-
man [2001] with each patch being deformed using a dense orien-
tation field, the same as was done in previous anisotropic texture
synthesis methods [Ying et al. 2001; Lefebvre and Hoppe 2006].
Each patch consists of n× n pixels (for our examples we use n of
10-14 pixels). We fill the area one patch at a time using either scan-
line order, or custom fill order based on morphological skeleton of
the fill area. As we traverse fill order locations looking for the next
patch center location, we skip already filled pixels as new patch
center, this policy gives an average overlap of n/2 pixels between
the patches.

We do not preform minimum error boundary cut as was done by
Efros and Freeman[2001], and simple overwrite S̃L with values of
the new patch. This is done for simplicity of the algorithm, and
because the correction stage takes care of correcting the boundaries.

To find the best patch for each point, we use the objective function
described in Section 5.1, where p ∈ C, with C being the candidate
patch set, in case of initialization, we use exhaustive list of patches
in P̃L (coarse level of example pattern pyramid) with 2L spacing.

5.2.3 Upsampling

To create a finer image from the next-coarser level, we upsample
the coordinates of the parent pixels. Similarly to Lefebvre and
Hoppe [2005] we assign to each of the four children the scaled
parent coordinates plus a child-dependent offset. To account for
anisotropic synthesis, the offsets have to be deformed using the
deformation field, this is consistent to how patches were deformed
during evaluation of our objective function. The process can be
summarized by the following formula:

Sl[2i+ ∆] = Sl+1[i] + φ(i; ∆)hl (4)

Where ∆ is a set of offsets,
{(

0

0

)(
0

1

)(
1

0

)(
1

1

)}
, hl is the

spacing on a given scale of the pyramid, so is equal to 2l, and
φ(i; ∆) is a deformed offsetRl[2i+∆]∆ for anisotropic synthesis,
whereR is the deformation field, sampled at pixel i, this is the same
field used with deforming Example Pattern neighbourhoods. For
isotropic texture synthesis φ(i; ∆) is just ∆.

5.2.4 Correction

The correction step takes the existing coordinates and tries to find
better neighbourhoods that minimize our overall objective function,
equation (1).

To accelerate neighbourhood matching we use coherence synthesis
[Ashikhmin 2001], only considering those locations in the Example
Pattern given by a 3 × 3 immediate neighbours of a image pixel
location i in S. Where i is also a center pixel of a given patch s we
are minimizing error for.

If the backwards optical flow field if valid (i.e. Yellow and Red
in Figure 2 (e)), we also include candidates around pixel i′, which
represents location of pixel i was in the last frame’s S. Since i′

coordinate might be a real number, we use bilinear interpolation
on all the fields to come up with candidate coordinates. Since S
has coordinate discontinuities, interpolating coordinates does not
always makes sense, however, since we take a neighbourhood of
candidate coordinates, we are bound to have good patch matches.

After the whole animation sequence has been animated, we can
repeat this correction process, and in the areas with valid forward
optical flow (i.e. Yellow and Green in Figure 2 (e)) also use i′′

where i′′ is where i will be in the next frame’s S.

5.3 Blending Coordinates

As mentioned earlier, we synthesize image S in which each pixel
i in S stores the coordinate of the Example Pattern pixel. The
resulting color at each pixel is given P [S[i]]. However, S may
have undesirable boundaries, thus we find it useful to blend patches
along the boundaries using following formula:

I[i] =
1

N

∑
∆∈{−1..1}2

P [S[i+ ∆]− ϕ(i; ∆)hl] (5)

Where ∆ is a 3×3 neighbourhood offsets, ϕ(s; ∆) = Rl[i+ ∆]∆
are the deformed offsets to alight with the our orientation field,
where R is the deformation field, hl = 2l is spacing at a given
pyramid level, and N is the number of points in the neighbourhood
patch. Note, that if i is not on a coordinate boundaries, the resulting
color will not be changed due to the appropriate offsets.

6 Post-processing

Texture synthesis produces either a halftone screen, or a layer of
paint. To achieve the final look, there are number of post processing
operations that we perform. In case of halftone styles, we uses
a halftone thresholding method [Ostromoukhov and Hersch 1999;
Durand et al. 2001; Freudenberg et al. 2002]. To produce more
pancil-like rendering, we use media simulation method [Kalnins
et al. 2002] to give appearance of paint being applied on paper.
The texture of paper is synthesized the same way the halftone/paint
texture, to maintain temporal coherence. Decoupling texture from

tonal adjustments allows for a greater control of the lighting,
without the need to recompute the texture layer, where density
needs to be adjusted.

(a)Initial S2 (b) Corrected S2 (c) S1

(d) S0

(e) Initial I2 (f) Corrected I2 (g) I1

(h) I0

Figure 9: (a-d) S Image Pyramid (e-h) I Image Pyramid

6.0.1 Tone-Correction

Despite the histogram normalization described in Section 4.5, there
is still a possibility of uneven tone in the resulting thresholded
result. This can be due to blurring in the halftone screen, uneven
intensity distribution in the example pattern, or other artefacts of
texture synthesis. To address these issues we adapt a similar
solution to previous work [Salisbury et al. 1997; Ostromoukhov
and Hersch 1999; Durand et al. 2001].

After the initial thresholding operation, the result, Figure 10 (b),
is blurred (to simulate spatial integration of the visual system
[Ostromoukhov and Hersch 1999]), and subtracted from original
tone, Figure 10 (a), to get our a new tone to be used, Figure 10 (c).
This process can be repeated, yet we find it, just one time is enough
to get a pleasing result. The result of using the new adjusted tone
can be seen in Figure 10 (d). Notice a more even stroke density, and
a resulting tone matching the original tone better.

(a) Initial Tone (b) Initial Result

(c) Adjusted Tone (d) Adjusted Result

Figure 10: Tone Correction. Threshold result (b) is blurred and
subtracted from original tone (a), to get our a new tone (c). The
result of using the new adjusted tone (c) can be seen in (d).

6.0.2 Shape Boundaries

Since the source of your renderings are 3d shapes, the shape
boundaries are much smoother then hand-drawn images. While for
some style it’s quite acceptable, and even desired, for effects that
involve paper effect, it may look too mechanical. Ideally we would
try to apply a method equivalent to stroke-based coherent stylized
silhouettes method [Kalnins et al. 2003], but doing so within our
framework is outside the scope of this work.

Instead we propose a simple limited solution to this problem. We
erode the shape mask (Figure 11 (d)) in a non-uniform way to
make boundaries less smooth. The noise that is used to erode the
boundaries comes from paper texture layer. Because this paper

(a) Original Result (b) Paper Texture

(c) Eroded Result (d) Adjusted Mask

(e) Result with Silhouettes (f) Silhouette Line

Figure 11: Boundary Erosion.

texture layer is also synthesised the same way as our halftone screen
layer, it is temporally coherent.

Eroding the edges, may result in the loss of dark boundary and
objecting mixing with the background too much (see Figure 11 (c)),
to fix that, we simply add a a bit of dark silhouette paint at the
boundaries of the shape (Figure 11 (f)), resulting in a more defined
shape silhouette.

7 Results

Formulating the problem as an optimization problem allows for
some interesting interactions. If we modify weights of the term
in the objective function, we can get different behaviour. See
Figure 12 for effects of changing these weights. If texture term
weight is decreased, then we get a more coherent result, yet the
texture gets more distorted, on the other hand if we make the
coherence term weight smaller, the texture is less distorted, yet we
get more popping and flickering. Having weights at 1.0 gives a
good balance of the two conflicting terms.

(a) (c) (d)

Figure 12: Different Weights. (a) Coherence: 1.0 Texture: 0.5 (b)
Coherence: 1.0 Texture: 1.0 (c) Coherence: 0.5 Texture: 1.0. Top
Row: Isotropic Synthesis Bottom Row: Anisotropic Synthesis.

One nice property of our method is that we don’t need any special
handling for camera zoom. As the camera zooms in, or the object
comes close to the camera, the Coherence term of the objective
function tries to brow the texture, while the Texture term tries to
maintain the same scale/structure of the texture. The result is a
perception of getting closer to the object without pattern growing
too much. Please watch the accompanying video for the illustration
of this effect, as well screenshots in Figure 13.

(a) Frame 1 (c) Frame 20 (d) Frame 40

Figure 13: Zoom: As we zoom in, each frame resembles our
pattern while still satisfying temporal coherence.

In Figure 16 you can find comparisons of our method with doing
standard object space texture mapping. In column (b) are our
Isotropic Synthesis results, as you can see, although the texture is
warped to follow a given orientation, there is no foreshortening or
stretching due to prospective projection, and the pattern spacing
remains constant in image space.

The main limitation of the method is that there still can be signifi-
cant popping and blurring, since in many cases it’s not possible for
both coherence and texture terms to be satisfied and something has
to give.

Some aspects of the method are not as successful as others, for ex-
ample using custom fill order based on morphological skeleton did

not make much of a difference over using scan-line order. Consider-
ing the increased computational cost added by pre-computation of
the fill order, it does not seem very practical. Also, modifying the
mask during patch sampling to respect occlusion boundaries and
creases does not produce visually drastic results. A further investi-
gations are needed to prove or disprove this result.

8 Future Work

Abstracted Flow Motion is a very strong shape cue, and even if
the texture lives in image space, and is not foreshortened, if it
moves with underlying 3D motion, it will appear 3D. In our
future work we hope to introduce ideas of [Breslav et al. 2007]
of abstracting flow. Perhaps an additional coherence term, as
well expended candidate search space during correction step
will allow for the system to find a better solution at expanse of
some sliding. We are hoping that additional sliding will allow
for the decreased amount of flickering and popping.

Better Tone Correction Our current simple tone correction only
works on one layer of synthesis, ideally it should account for
multiple layers of texture and media simulation (i.e.optimize
blending weights between layers).

Error Maps It could be interesting to try to use per-pixel error
values (see Figure 14) to fade out some areas of texture where
error is high, or to use this information in multi-layer tone
correction. So the error would be used to try to have one
layer show up more where there is small overall error and
less where there is high error. This could work if for different
layers, error occurs in different areas (may not necessary be
true).

(a)Texture Error (b) Coherence Error (c) Total Error

Figure 14: Per-Pixel Error Maps.
Orientations Introducing new orientations to be used by the

method, both automatic and user assisted could be useful.
Especially ways to abstract the orientations, and warp them
based on human perception to give different looks.

Coherent Stylized Silhouettes Extending the method to handle
coherent stylized silhouettes and other feature lines might be
an interesting path for future research.

Patch Warping More accurate patch warping might produce bet-
ter results.

Temporal Coordinate Smoothing In Section 5.3 we described a
method for blending coordinated spatially in a way that only
blurred pixels at the boundaries. Similarly, perhaps we can
blur coordinates temporally, trying to minimize popping and
flickering.

Features Evaluations Our current evaluation of the effects of us-
ing different features for similarity measure of neighbour-
hoods in Example Pattern (Section 4.5) needs more evalua-
tion.

Real-Time Version Current system is far from real-time perfor-
mance, all the calculations are done on the CPU, and can take
up to 5 minutes for a single frame to be synthesised. With
game industry being larger then animation one, developing a
real-time version of the algorithm is an interesting problem.

Video Since our textures live in image space, it’s natural to try to
apply the method to work with video as an input, however,
there are a number of hard problems to be solved, like getting
good occlusion and dis-occlusion maps.

9 Acknowledgments

I would like to thank my supervisor, Aaron Hertzmann, for his
guidance over the duration of the Masters program, Karan Singh
for reading the report and giving feedback, Alexandrina Orzan
for her hard work trying to integrate Blender into the pipeline,
Martin de Lasa for sharing his Linear Algebra library, and my
family, friends, and other DGP Lab Graduate Students for providing
valuable feedback and support.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. Proceedings
of the 2001 symposium on Interactive 3D graphics, 217–226.

BÉNARD, P., BOUSSEAU, A., AND THOLLOT, J. 2009. Dynamic
solid textures for real-time coherent stylization. Proceedings of
the 2009 symposium on Interactive 3D . . . (Jan).

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F.
2006. Interactive watercolor rendering with temporal coherence
and abstraction. Proceedings of the 4th international symposium
on Non . . . (Jan).

BRESLAV, S., SZERSZEN, K., MARKOSIAN, L., BARLA, P., AND
THOLLOT, J. 2007. Dynamic 2d patterns for shading 3d scenes.
SIGGRAPH ’07: SIGGRAPH 2007 papers (Aug).

BREU, H., GIL, J., KIRKPATRICK, D., AND WERMAN, M. 1995.
Linear time euclidean distance transform algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence 17,
5.

CANNY, J. 1987. A computational approach to edge detection.
Readings in computer vision: issues (Jan).

COCONU, L., DEUSSEN, O., AND HEGE, H. 2006. Real-time
pen-and-ink illustration of landscapes. Proceedings of the 4th
international symposium on Non . . . (Jan).

CUNZI, M., THOLLOT, J., PARIS, S., AND DEBUNNE, G. 2003.
Dynamic canvas for non-photorealistic walkthroughs. Graphics
Interface 2003 (Jan).

DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU,
F., AND DORSEY, J. 2001. Decoupling strokes and high-level
attributes for interactive traditional drawing. Proceedings of
Eurographics Rendering Workshop’01 (May), 71–82.

EFROS, A., AND FREEMAN, W. 2001. Image quilting for texture
synthesis and transfer. Proceedings of SIGGRAPH 2001 (Jan).

EISENACHER, C., AND LEFEBVRE, S. 2008. Texture synthesis
from photographs. Computer Graphics . . . (Jan).

EISSELE, M., WEISKOPF, D., AND ERTL, T. 2004. Frame-to-
frame coherent halftoning in image space. Theory and Practice
of Computer Graphics (Jan).

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. SIGGRAPH ’07: SIG-
GRAPH 2007 papers (Aug).

FREUDENBERG, B., MASUCH, M., AND STROTHOTTE, T. 2002.
Real-time halftoning: A primitive for non-photorealistic shad-
ing. Proceedings of the 13th Eurographics workshop on . . .
(Jan).

GIRSHICK, A., INTERRANTE, V., HAKER, S., AND LEMOINE,
T. 2000. Line direction matters: an argument for the use of
principal directions in 3d line drawings. Proceedings of the 1st
international symposium on Non- . . . (Jan).

HAN, J., ZHOU, K., WEI, L., GONG, M., BAO, H., AND ZHANG,
X. 2006. Fast example-based surface texture synthesis via
discrete optimization. The Visual Computer (Jan).

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detection. 147–151.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth
surfaces. International Conference on Computer Graphics and
. . . (Jan).

HERTZMANN, A., JACOBS, C., OLIVER, N., AND CURLESS, B.
2001. Image analogies. International Conference on Computer
Graphics and . . . (Jan).

HERTZMANN, A. 2003. A survey of stroke-based rendering. IEEE
COMPUTER GRAPHICS AND APPLICATIONS (Jan).

KALNINS, R., MARKOSIAN, L., AND MEIER, B. 2002. Wysiwyg
npr: Drawing strokes directly on 3d models. ACM TRANSAC-
TIONS ON GRAPHICS (Jan).

KALNINS, R., DAVIDSON, P., AND MARKOSIAN, L. 2003.
Coherent stylized silhouettes. ACM Transactions on . . . (Jan).

KAPLAN, M., AND COHEN, E. 2005. A generative model for
dynamic canvas motion. Computational Aesthetics 2005 (Jan).

KIM, Y., YU, J., YU, X., AND LEE, S. 2008. Line-art illustration
of dynamic and specular surfaces. International Conference on
Computer Graphics and . . . (Jan).

KLEIN, A. W., LI, W., KAZHDAN, M. M., CORRÊA, W. T.,
FINKELSTEIN, A., AND FUNKHOUSER, T. A. 2000. Non-
photorealistic virtual environments. 527–534.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. International
Conference on Computer Graphics and . . . (Jan).

KWATRA, V., ADALSTEINSSON, D., KIM, T., AND KWATRA, N.
2007. Texturing fluids. IEEE Trans. Visual. Comput. Graphics
(Jan).

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. Proceedings of ACM SIGGRAPH 2005 (Jan).

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. Proceedings of ACM SIGGRAPH 2006 (Jan).

MARKOSIAN, L., KOWALSKI, M., AND GOLDSTEIN, D. 1997.
Real-time nonphotorealistic rendering. Proceedings of the 24th
annual conference on . . . (Jan).

MEIER, B. 1996. Painterly rendering for animation. Proceedings
of the 23rd annual conference on . . . (Jan).

NARAIN, R., KWATRA, V., LEE, H., KIM, T., CARLSON, M.,
AND LIN, M. 2007. Feature-guided dynamic texture synthesis
on continuous flows. Eurographics symposium on rendering.

OSTROMOUKHOV, V., AND HERSCH, R. 1999. Multi-color
and artistic dithering. SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive
techniques (Jul).

PASTOR, O., FREUDENBERG, B., AND STROTHOTTE, T. 2003.
Real-time animated stippling. IEEE Computer Graphics . . .
(Jan).

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-time hatching. Proceedings of the 28th annual
conference on Computer . . . (Jan).

SALISBURY, M., WONG, M., HUGHES, J., AND SALESIN, D.
1997. Orientable textures for image-based pen-and-ink illustra-
tion. Proceedings of the 24th annual conference on Computer
. . . (Jan).

SNAVELY, N., ZITNICK, C., KANG, S., AND COHEN, M. 2006.
Stylizing 2.5-d video. Proceedings of the 4th international
symposium on Non . . . (Jan).

TAPONECCO, F., URNESS, T., AND INTERRANTE, V. 2006. Di-
rectional enhancement in texture-based vector field visualiza-
tion. Proceedings of the 4th international conference on . . .
(Jan).

TURK, G. 2001. Texture synthesis on surfaces. Proceedings of the
28th annual conference on Computer . . . (Jan).

VANDERHAEGHE, D., BARLA, P., AND THOLLOT, J. 2007.
Dynamic point distribution for stroke-based rendering. . . .
Symposium on Rendering . . . (Jan).

WANG, B., WANG, W., YANG, H., AND SUN, J. 2004. Efficient
example-based painting and synthesis of 2d directional texture.
IEEE Transactions on Visualization and Computer . . . (Jan).

WEI, L., AND LEVOY, M. 2001. Texture synthesis over arbitrary
manifold surfaces. Proceedings of the 28th annual conference
on . . . (Jan).

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. Eurographics
Association.

XU, K., COHEN-OR, D., JU, T., LIU, L., ZHANG, H., ZHOU,
S., AND XIONG, Y. 2009. Feature-aligned shape texturing.
ACM Trans. on Graphics (Proceeding of SIGGRAPH Asia 2009)
(Sep).

YING, L., HERTZMANN, A., AND BIERMANN, H. 2001. Texture
and shape synthesis on surfaces. . . . 2001: Proceedings of . . .
(Jan).

ZUIDERVELD, K. 1994. Contrast limited adaptive histogram
equalization. Graphics gems IV (Jan).

(a) (b) (c)

Figure 15: Object Comparison. (a) Object Space Texture Mapped (b) Image Space Oriented Texture Synthesis(c) Image Space Non-Oriented

(a) (b) (c)

Figure 16: Object Comparison. (a) Object Space Texture Mapped (b) Image Space Oriented Texture Synthesis(c) Image Space Non-Oriented

