
Typing on Glasses:
Adapting Text Entry to Smart Eyewear
Tovi Grossman1, Xiang 'Anthony' Chen2, George Fitzmaurice1

1Autodesk Research
{firstname.lastname}@autodesk.com

2Carnegie Mellon University
xiangchen@acm.org

One promising method to provide text input on smart
eyewear devices, that has yet to be explored, is to use the
device’s built in touch input. Specifically, a number of
smart eyewear devices are now including a touchpad for
gesture-based input on the side of the glasses (e.g. Google
Glass, SiME Smart Glasses, Recon Jet, Optivent Ora).
However, given their limited input space of these
touchpads, text entry may still be difficult.

Recent research on Smart Watch interaction has helped
identify a number of promising techniques for text-entry
which require very small input real estate. These include
ZoomBoard [22], SplitBoard [9], Callout [13], and ZShift
[13]. However, these techniques all require direct target
acquisition on the display surface. In contrast, Swipeboard
is a watch-based technique that specifies each character
using only two directional gestures: the first selects a
subgroup of keys and the second specifies a key within the
subgroup [7]. Such gesture-based methods offer a subtle,
effective and low-cost text entry solution. More
importantly, the technique is target-agnostic supporting
eyes-free input, making it a promising candidate for use on
the side touch pad of smart eyewear. However, this
technique has yet to be implemented, deployed or tested on
smart eyewear.

In this paper we investigate the limitations and feasibility of
adapting a gesture-based text entry technique (Swipeboard)
to smart eyewear. In our initial study we find that the
unique configuration of a smart eyewear touch pad makes it
difficult to distinguish between the 8 atomic directional
gestures, and that diagonal swipes take longer to perform.
To address this issue, we proposed a new design called
SwipeZone. SwipeZone takes advantage of the relatively
wider dimension on the side touch pad and divides it into
three zones. The diagonal gestures of Swipeboard are
replaced with zone-specific vertical gestures (Figure 1).

Figure 1. SwipeZone divides the width of a smart eyewear side
touch pad into three zones, swiping down on the front zone
selects the lower-left group ‘ZXC’, then swiping to the back

selects ‘C’ – the rightmost key in the group.

ABSTRACT
Text entry for smart eyewear is generally limited to speech-
based input due to constraints of the input channels.
However, many smart eyewear devices are now including a
side touchpad making gesture-based text entry feasible. The
Swipeboard technique, recently proposed for ultra-small
touch screens such as smart watches, may be particularly
suitable for smart eyewear: unlike other recent text-entry
techniques for small devices, it supports eyes-free input.
We investigate the limitations and feasibility of
implementing Swipeboard on smart eyewear, using the side
touch pad for input. Our first study reveals usability and
recognition problems of using the side touch pad to perform
the required gestures. To address these problems, we
propose SwipeZone, which replaces diagonal gestures with
zone-specific swipes. In a text entry study, we show that
our redesign achieved a WPM rate of 8.73, 15.2% higher
than Swipeboard, with a statistically significant
improvement in the last half of the study blocks.

INTRODUCTION
Smart eyewear and heads up displays enable always-
available access to information, yet only provides limited
interaction possibilities due to its small and wearable form,
making tasks like text entry extremely hard. One solution is
to use a supplementary device, such as the Twiddler [16].
However, having to carry or be tethered to an additional
device defeats the purpose of smart eyewear, which is
meant to provide unobtrusive and immediate access to
information. Vision-based techniques have also been
explored [15]; yet they remain a suboptimal as such
techniques are often computationally expensive and could
potentially be error-prone due to the uncertainty of the
environment. Voice input may be useful in certain
situations, but when surrounded by peers it might incur
privacy concerns and be socially unacceptable [25, 26].

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MobileHCI '15, August 24 - 27, 2015, Copenhagen, Denmark
© 2015 ACM. ISBN 978-1-4503-3652-9/15/08…$15.00
DOI: http://dx.doi.org/10.1145/2785830.2785867

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

144

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2785830.2785867

Our second study tests both Swipeboard and SwipeZone on
a smart eyewear unit using a text entry task. The results
show that gesture-based text entry is feasible on a smart
eyewear touch pad. The SwipeZone redesign outperforms
the original Swipeboard technique (15.2% faster), however,
only reaches statistical significance in the final half of the
study. Overall, our main contributions are the first smart
eyewear text entry techniques that utilize the built-in touch-
sensitive input area, and two studies that investigate the
feasibility of the techniques. While these contributions are
based on studies using a Google Glass device, the results
generalize to a variety of smart eyewear devices that our
now being built with embedded touch pads.

RELATED WORK
To understand the challenges of smart eyewear’s small and
wearable form factors, we review text entry research for
both devices with very small input areas and head-mounted
displays. We also review gesture-based text entry
techniques to inform our design on smart eyewear.

Text Entry Techniques for Small Form Factors
Past work has explored various text entry techniques for
devices with very small form factors. Earlier work proposed
the use of a miniaturized wearable keyboard [20]. More
recent work propose the use of motion sensors, e.g., using
tilting to specify characters for text entry [23, 28].
MultiWidget uses a dialing gesture along the watch’s edges
to specify a numeric value [4].

Recent work has also looked at the use of tiny QWERTY
soft keyboards for entering text on small devices [13]. Such
techniques have leveraged zooming [22], callouts [13], and
swiping gestures [7, 9]. While not necessarily meant for
small displays, Arif et al. combine a QWERTY keyboard
with directional strokes to enter special keys [2].

Another approach is using alternate key mapping, such as
chording, key selections or gestural shortcuts. For example,
Wigdor and Balakrishnan add three chording keys to speed
up typing on a numeric phone keypad [29]. Mackenzie
demonstrates the use of three keys to enable selection-based
text entry [17]. MessageEase places characters on a 3x3
matrix of keys, and characters are entered using a two-
keystroke scheme [21]. The 1line keyboard incorporates
touch into key selection, reducing the keyboard into one
line of keys [14].

Text Entry Techniques for Head-Mounted Displays
Head-mounted displays have been used to create immersive
or mobile experiences with digital information. However,
their immersive and mobile nature also prevents the user
from accessing regular input devices to perform text entry
tasks. To solve this problem, researchers have experimented
with various customized input devices. Twiddler is a one-
handed chording keyboard that allows for eyes-free text
entry for mobile or wearable devices [16]. This technique
was compared to Miniature QWERTY keyboards in follow
up-work [8].

The chording glove [27] and Huffman Base-4 Text Entry
Glove [3] embed buttons into the glove and users can
specify characters directly using hand gestures. Liu et al.
propose a vision-based mechanism that uses a head-
mounted camera to recognize mid-air handwriting [15].

Other researchers focused on using a wrist-worn input
device for text entry, which is also a potential solution for
typing while wearing a head-mounted display. For example,
Airwriting employs inertial sensors and machine learning
techniques to recognize handwriting based on the hand’s
motion [1]. One-key keyboard augments one single key to
sense a user’s fingertip position, thus allowing typing on a
full QWERTY keyboard [11].

While all this work has demonstrated various possible text
entry solutions for head-mounted display, they often require
additional input devices, or rely on vision-based recognition
that is potentially high-cost and error-prone. Minuum has
proposed the use of the 1line keyboard for Google Glass in
a proof-of-concept video1, but the technique has yet to be
implemented or evaluated. Our goal is to enable a text entry
mechanism that is lightweight and self-contained within
modern head-mounted displays, such as the Google Glass.

Gesture-based Text Entry Techniques
Gestural shortcuts can also be effective with small form
factors. Chen et al. [7] summarized two ways of encoding
characters with gestures: a continuous approach maps a
word or a character to a continuous stroke (e.g., MDITIM
[10], Graffiti [6], EdgeWrite [31], Shark2 [12]), and a
discrete approach maps each character to a number of
symbolic tokens (e.g., H4-Writer uses a base-4 encoding
[19] and Quikwriting uses base-9 [24]).

For example, EdgeWrite uses stylus-based gestures guided
by the physical edges of a device, thus making it easier and
faster to perform [31]. In contrast, Swipeboard specifies a
character by two swipes: novices learn the gesture by
swiping to locate a specific key while experts gradually
learn and memorize the swipe combination for each
character [7].

Given their limited input real-estate, discrete techniques,
such as Swipeboard [7], may be preferable for smart
eyewear devices. Furthermore, gesture-based input like
Swipeboard is ‘target-agnostic’ [30], making it promising
for smart eyewear, as absolute touch coordinates are never
required. We are unaware of any implementations or
evaluations of such techniques for smart eyewear in the
research literature.

In summary, our review of the literature indicates that there
are no existing gesture based text entry techniques for smart
eyewear, and that of the existing techniques for small form
factors, SwipeBoard holds particular promise. As such, we
focus the remainder of the paper on adapting SwipeBoard
to a smart eyewear form factor.

1 http://minuum.com/google-glass-keyboard/

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

145

ADAPTING SWIPEBOARD TO SMART EYEWEAR
To adapt the gesture-based Swipeboard technique to smart
eyewear, we first review its design and performance model.
We then describe our implementation and initial experience
of using it on a smart eyewear device.

Reviewing Swipeboard: How It Works
Swipeboard is a recently developed text entry technique
that encodes each alphabetic character into a series of two
touch actions. The technique utilizes the traditional
QWERTY keyboard layout, to allow users to leverage their
existing spatial memory of character locations.

The keyboard is divided into nine regions (Figure 2a), each
containing 3 (e.g., ‘ASD’) or 4 (e.g., ‘RTYU’) characters.
The first touch action is used to select the desired region.
The swipe is in one of 8 directions (e.g. swiping left for
“ASD” or up and to the right for “IOP”.) A tap is used to
select the middle region (“FGH”). Once a region is
selected, a zoomed in view is displayed ((Figure 2b).

Figure 2. The original Swipeboard technique. a) The first
swipe specifies one of the nine regions subdivided from a

QWERTY keyboard. b) The second swipe specifies the
character, in this example, ‘D’. Figure from Chen et al. [7].

The second action is used to select the desired character
within a region. Swiping left selects the left character,
tapping selects the center character, and swiping right
selects the right character. In the one case of four characters
(‘RTYU’), swiping left selects ‘R’, up-left selects ‘T’, up-
right selects ‘Y’ and right selects ‘U’. The user can swipe
down to cancel the selected region and return to the first
level keyboard view.

Additional gestures are used for other functions. A double-
swipe down-left deletes a character, and double-swipe
down-right enters a space, and a double-swipe up switches
to a symbol and number keyboard.

An important property of Swipeboard is that it is target
agnostic: the actions can occur anywhere on the display,
and no spatial target selection is required. This makes it
particularly appropriate for smart eyewear, since users
cannot see where their finger lands on its side touchpad.

Performance Model
To understand the limits of its performance, a four-stage
performance model is used to describe the execution time
(T) for individual characters using the Swipeboard
technique. Each character consists of two input events.
Each input event consists of a planning phase, when the
finger is up (Tu1, Tu2), and an action phase, when the finger

is down (Ta1, Ta2). Thus, the completion time for a character
is as follows:

T = Tu1 + Ta1+ Tu2 + Ta2
Chen et al. [7] used previous performance model data to
estimate that in optimal conditions an expert could perform
at 464ms per character, or 25.87 WPM. Later, we relate our
study results to this performance model.

Adaptation to Smart Eyewear
In our initial implementation, we used a Google Glass unit
and developed a standalone Android application using the
ADT plugin for the Eclipse IDE. The implementation
reproduced the Swipeboard technique exactly. The X and Y
coordinates were obtained through the Android
MotionEvent object that the side touch pad produces.

There were some issues with this initial implementation
which seemed to limit the efficiency of the technique. First,
taps, which were defined by a travel distance of less than 10
pixels, were sometimes being recognized as swipes. This is
due to the higher pixel density of the input device. Second,
and more importantly, the diagonal swipes, which were
detected at 45° angles, were difficult to perform. The short
and wide nature of the touchpad afforded wider diagonal
gestures at an angle much less than 45°.

To better understand and address these issues, we
performed an experiment to investigate how accurately
users could perform the atomic gestures required for the
Swipeboard technique, on the Google Glass touch pad.

STUDY 1 – ATOMIC GESTURES
The Swipeboard technique uses 8 directional gestures and a
tap as the building blocks for text entry. The technique was
previously validated on a watch-sized input area (12mm by
12mm). However, the dimensions of the touch pad on smart
eyewear may be quite different. For example, with Google
Glass, the touch pad is 76.2mm by 10.4mm, with a
resolution of 1366x187. It is unclear how well
Swipeboard’s atomic gestures can be performed and
distinguished on touch pads with this unique form factor.

Apparatus
The study was performed using a Google Glass unit. The
device was tethered to a laptop via a USB cable so that the
screen output could be monitored by the experimenter.

Participants
We recruited 10 participants (1 female, 9 male), with an
average age of 33.2. Nine of the participants were right
handed and all participants used their right hand for input,
as this is the side that has the touchpad on the Google Glass
device. The participants were recruited from our institution
and were not compensated. None of the participants had
extensive experience with smart eyewear.

Design
A repeated measures within-participant design was used.
The independent variables were Direction (N, NE, E, SE, S,
SW, W, NW, TAP) and Block (1-8). Participants performed

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

146

the study in one session lasting approximately 10 minutes.
The session was broken up into 8 blocks. Each block
consisted of 36 trials, with each gesture appearing four
times, in randomized order. This resulted in a total of 288
trials per participant, and a total of 2880 data points overall.

Procedure
Participants sat in a chair facing a black background, which
allowed them to clearly see the content on the Google Glass
display. The background was approximately 2 feet away
from the user’s head position. We allowed users to rest their
elbows on the chair armrest to prevent fatigue.

The trial started by displaying the gesture direction. An
arrow inside a square was used for the eight directional
strokes, and a dot in the middle of the square was used for
TAP (Figure 3a). The user then performed the associated
gesture by swiping on the side touch pad. We mapped the
right side of the display to the back of the Google Glass
touch pad, so a swipe from front to back would perform the
EAST stroke (Figure 3b). This mapping seemed more
intuitive to users during pilot testing, and is the default
Google Glass mapping.

Figure 3. a) Exemplar visual stimulus (NE, TAP, S); b)

illustration of the mapping of an EAST stroke.

The start and end coordinates of each touch event were
logged, as was the time between the two events. There were
no “errors” for this study, since the purpose was to measure
users’ accuracy of performing the gestures. However, if
either the X or Y component of the stroke was in the
opposite direction of the correct input, the input was
ignored and the user was prompted to try again. Such cases
indicated a mistaken interpretation of the desired gesture,
not an inaccuracy in performing it. When a gesture was
entered, the next trial was immediately displayed.

Results and Analysis

Analyzing and Visualizing Swiping Gestures
We illustrate the end points for each atomic swipe/tap
gesture using a scatterplot in Figure 4. Each gesture is
color-coded. The scatterplot shows the X coordinates of the
horizontal and diagonal gestures are ‘stretched’, due to the
wide form factor of the touchpad. Figure 5a shows the
normalized vectors computed from the original touch event
data. There is some degree of overlap between adjacent
gestures, which is further illustrated in Figure 5b: it shows
the possible ranges of each swipe, computed from their
mean ±3 standard deviations. It shows that while the
directionalities of the horizontal swipes (E and W) are fairly
uniform, the vertical and diagonal swipes, however, are
widely distributed and overlap with each other.

Figure 4. Scatterplot of each gesture’s end points in Study 1.

Figure 5. Directionalities of the atomic gestures from Study 1:

scatterplot of the normalized vectors computed from each
gesture (a); possible ranges of each swipe, computed from

their mean ± 3× standard deviation (b).

Building Models to Recognize Swiping Directions
The above data indicates that using the vector angles to
determine a stroke’s direction may not be effective. Instead,
we use the Cartesian coordinates (corresponding to the end
points of the swipes). As shown in Figure 6a, we can define
8 quadrants by a δx and δy parameter. For example, a stroke
with X > δx and Y > δy would be classified as NE.

We use an iterative search to find the optimal parameters to
determine swipe direction. The first step in our recognition
is to classify a tap, which is defined by touch points whose
distance to the origins is smaller than a certain threshold.
We use a bounding box with dimensions tapx and tapy. We
then distinguish between the different swipes by finding
appropriate values of δx and δy.

To find the optimal parameter values we perform a naïve
stepwise iterative search across all possible combinations of
the parameter pairs, first (tapx, tapy), and then (δx and δy).
We iterate with steps of 1px. We calculated the optimal
parameters and resulting accuracy across the entire data set.
The optimal values for recognizing a TAP (tapx = 53, tapy =
42) resulting in an accuracy of 99.97%. The optimal values
of δx and δy were 136 and 59, with an accuracy of 94.0%.
This method would result in a 6% error rate.

Figure 6. a) The gestures can be determined based on

coordinates, δx and δy, which groups the end points of each
swipe into eight swiping directions. b) Execution time by

gesture shows diagonal swipes took significantly longer. Error
bars are standard error.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

147

Execution Times
A repeated measures ANOVA showed that the direction
had a significant effect on the execution time of the gestures
(F7, 63 = 6.753, p < .0001). The diagonals seemed to be
consistently slower than their adjacent non-diagonal
(straight) strokes. To confirm this, we performed an
additional analysis comparing the gesture types (Straight,
Diagonal, or Tap). The analysis showed that the gesture
type had a significant effect on the execution time (F2, 18 =
43.4, p < .0001). The average times were 163.04ms for
Straight, 195.99ms for Diagonal, and 87.26ms for Tap
(Figure 6b). Post-hoc pairwise comparison using
Bonferroni correction showed that the difference between
all pairs was significant (p < .05).

SWIPEZONE
The results of our first study suggest that distinguishing
between Swipeboard’s eight-direction swiping may be
feasible, however with some level of error. The results also
show that diagonal strokes are significantly slower than
non-diagonal swipes and taps. These results motivate us to
propose an alternative design that fits the input
characteristics of smart eyewear. Our proposed technique,
SwipeZone, does so by eliminating diagonal swipes.

Our first modification in designing SwipeZone is to slightly
change to the QWERTY layout. The original layout requires
swiping diagonally at the second level when typing from
the group ‘RTYU’. To eliminate diagonal swipes, we move
‘P’ to the second row, and ‘L’ to the third, replacing the
comma (Figure 7). This layout eliminates the need for
diagonal swipes in the second level.

Figure 7. Swipeboard’s layout is consistent with QWERTY but

has a 4-character group. Our modified layout shifts the
locations of ‘P’ and ‘L’ so each group has three characters.

Our second modification is to eliminate diagonals from the
first level, by replacing them with zone specific vertical
swipes, similar in spirit to Zone Menus [32]. In particular,
we leverage the relatively wide dimensions of smart
eyewear touch pads, and divide the input area horizontally
into three equally sized zones. For tactile reference, we
include a strip of tape on the middle zone (Figure 8). The
tape’s rough surface is easily distinguishable from the other
two zones’ smooth surfaces.

With SwipeZone, the diagonal gestures are replaced by
vertical swipes in the corresponding zones. For NE and SE
the user swipes up and down in the front zone; for NW and
SW the user swipes up and down in the back zone: for N
and S, the user swipes up and down in the middle zone. The
taps and horizontal swipes are still target agnostic. For
example, to type ‘C’, the user first swipes down in the front
zone, which selects ‘ZXC’. The user then swipes

horizontally to select ‘C’ (Figure 9). Similar to the
Swipeboard technique, user can cycle through alternative
keyboard characters by swiping up twice.

Figure 8. A strip of blue tape helps distinguish the three zones

through tactile feedback.

We draw borders around the four regions that require zone-
specific swipes, to help remind users that a zone-based
gesture is required (Figure 9). We also show the zoomed-in
region in-place while keeping the entire keyboard visible in
the background. This allows users to plan their next
character in parallel to performing the second level gesture
for the current character (Figure 9).

Figure 9. Visual lines help distinguish the characters which
require a swipe in one of the side zones. Level 2 shows the

selected region in-place, so the entire keyboard is still visible.

STUDY 2: TEXT ENTRY EVALUATION
To evaluate our SwipeZone technique for text entry on
smart eyewear, we use a traditional text entry task to
measure its performance in comparison with Swipeboard.
We are not aware of any existing technique that has been
implemented to use the side touch pad of smart eyewear for
text entry. Thus, we do not include a baseline technique for
comparison; however, we can contrast our results to prior
studies on text entry. Our primary goals are to understand
how feasible text entry is, if at all, on smart eyewear, and to
identify if there are any performance differences in the
SwipeZone and Swipeboard techniques. A broader
evaluation of the design space of possible smart eyewear
text entry techniques is left to future work.

Apparatus
The apparatus was the same as the first study.

Participants
We recruited 16 participants (7 female, 9 male), with an
average age of 28.3. All of the participants were right
handed and all used their right hand for the text entry task.
The participants were recruited externally from a recruiting
list that was generated from online postings, and were
provided with $50 gift card. None of the participants had
prior experience using Google Glass.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

148

Design
A repeated measures mixed design was used. The between-
participant independent variable was the technique
(Swipeboard, SwipeZone). The within-participant
independent variable was Block (1-20). Participants
performed the study in one session lasting approximately 80
minutes. The session was broken up into 20 blocks. Each
block consisted of 10 trials. In each trial, the user typed in a
single 5-letter word, randomly chosen from Mackenzie’s
phrase set [18]. This resulted in a total of 200 trials per
participant, and a total of 3200 trials overall.

Procedure
Before the study began, the assigned technique was
demonstrated to participants using a Samsung Galaxy S4
phone. After explaining the technique, users performed a
warm-up block on the phone, which consisted of 10 words.

The physical set up and seating position was the same as
described in Study 1. Before the start of each trial, the
system displayed a 5-letter word. After reading the word the
participant tapped to begin the trial. The word then
disappeared and the keyboard was displayed. This
prevented participants from reading the word while the trial
time was being timed. The participant used the assigned
technique to transcribe the word (Figure 10). If the user
typed the wrong character a beep was sounded and the
correct word was displayed on the screen. However, the
incorrect letter was not typed, so that users would not need
to delete characters. The user would need to retry until they
typed the correct character. This was recorded as a “hard
error”. We also recorded “soft errors” when the user’s
initial stroke activated the wrong region of the keyboard.
The trial was completed when all five characters were
correctly typed.

Figure 10. Users performed the text entry task on a Google
Glass unit. Correctly typed letters are displayed in white.

For Swipeboard, we used the updated layout with each
group containing only 3 characters (for consistency with
SwipeZone). The Cartesian tessellation (Figure 6a) was
used to classify the gestures.

Results and Analysis

Character Entry Time
The main measurement was the character entry time. Our
analysis is based on error-free characters (we also provide
an analysis of errors later in this section). Similar to prior
work [7] we divide each character entry time into four
phases: the time until the first touch event (First Up), the
time taken for the first swipe or tap (First Action) the time
until the second touch event (Second Up) and the time taken
for the second swipe or tap (Second Action). The total
character entry time was the sum of these four phases.

We first analyze the per-character completion time for
error-free trials. A repeated measures ANOVA showed a
main effect for block (F19, 266 = 34.9, p < .0001), but did not
reach significance at the p < .05 level for the keyboard type
(F1, 14 = 3.350, p = 0.089). The overall per-character
completion times were 1.97s for Swipeboard and 1.67s for
SwipeZone. The lack of a significant effect, despite a
15.2% performance difference, is likely due to smaller
sample-size.

Figure 11. Error-free character completion time by block.

As illustrated in Figure 11, the performance differences do
seem to increase as training continues. When we repeat the
analysis on just the last 10 blocks, the difference does reach
a significant level (F1, 14 = 5.136, p < 0.05). The entry times
for the last 10 blocks are 1.812s and 1.467s for Swipeboard
and SwipeZone, respectively.

The effect of the actual character being entered was also
significant (F25, 375=16.9, p < .0001). Figure 12 illustrates
the character entry times for each character. The entry times
for most common characters are fairly uniform.
Unsurprisingly, ‘G’ is one of the fastest, since its gesture
consists of two taps. The three slowest characters are those
that appear rarely in the vocabulary set (J, X, Q). This
shows evidence that learning with the technique occurs not
only at the technique level, but may also occur at the
individual character level.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

149

Figure 12. Completion times for each character. Uncommon
characters (e.g., J, X, Q) took significantly longer, suggesting

learning also happened at the individual character level.

Words per Minute (WPM)
Figure 13 shows the error-free WPM rates for each of the
techniques. In the last block, the WPM rates were 8.73 for
SwipeZone, and 7.14 for Swipeboard. Both rates increase
according to the Power Law of Learning, fitting to the
curves at R2 = 0.95 for SwipeZone and R2 = 0.90 for
Swipeboard. If these trends continued, SwipeZone would
reach 10 WPM after a total of 40 blocks.

Figure 13. WPM rates and the associated power curves.

Performance Model
To further understand the difference in the two techniques,
we look at a breakdown of the character entry time, by each
stage of the performance model (Figure 14).

An interesting effect is that the character entry times are
dominated by the First Up phase, where the user locates
their character and plans the gesture input. Anecdotally, we
observed that users, after some blocks of training, started to
plan for both levels of the gesture before performing the
associated actions. This could explain why the Second Up
phase is much shorter. Figure 14 also shows that the actual
stroke times (First Action, Second Action) were much
shorter than the two phases that involved decision-making.

The other interesting observation is that the main difference
between the two techniques is at the Second Up phase. The
average Second Up times were 564ms for Swipeboard and

408ms for SwipeZone. This difference was the one phase
where Technique had a significant effect (F1, 14 = 10.695, p
< .01). This increased time seemed to be a result of the
Swipeboard users waiting to see if their first stroke was
interpreted correctly or not, whereas the tactile feedback of
SwipeZone gave users immediate feedback.

Figure 14. Times for the four phases of the performance model

(based on Chen et al. [5]). SwipeZone contributed to a
significantly shorter Second Up phase. (*p < .01)

Errors
We analyzed both soft errors (errors in the first level
gesture) and hard errors (errors at the second level gesture).
The soft error rates were 17.8% for Swipeboard and 15.8%
for SwipeZone. The difference was not significant. The
hard error rates were also not significantly different – 9.3%
for Swipeboard and 9.1% for SwipeZone. The majority of
the hard errors were due to errors made at the first level:
users continued with the character entry (causing a hard
error) rather than cancelling the erroneous first-level
selection (causing a soft error). The hard error rate, when
the first-level selection was correct, was 2.4% and 1.8% for
Swipeboard and SwipeZone, respectively.

These results show that the majority of errors made with the
techniques resulted from the first level. And while the
SwipeZone technique reduced the execution time in Second
Up phase, the technique itself is still error prone. We
hypothesize, based on our observations, that a proportion of
these errors are caused by users choosing the wrong gesture
to perform (e.g. E instead of W), and not choosing the right
gesture but performing that gesture improperly (e.g.
swiping in the wrong zone).

LIMITATIONS
As an initial study into the issue of text entry on smart
glasses, the study design has a number of limitations which
should be considered and may impact for replicability of
the results.

First, to simplify the task for users, we prevented incorrect
characters from being displayed, so that users would not
have to correct those errors. The impact of error correction
on performance thus needs to be better understood.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

150

Second, users entered short words instead of the phrases
typically used in text entry studies. This again was done to
simplify the task for participants. Assessing the impact of
cognitive load when full phrases need to be entered should
be investigated further.

Our study also consisted of one long session, instead of
multiple shorter sessions. Having multiple sessions could
help understand learning retention, and could also reduce
fatigue on behalf of the users. While we did provide breaks
throughout our study, participants may have had lower
performance in the final blocks due to fatigue. Having
multiple sessions could also increase the total amount of
data which is captured.

In general, this study may be considered a feasibility study
to show that the technique does in fact work, where more
formal analysis should be conducted in the future to gather
specific metrics of the techniques, such as WPM and KSPC
in more externally valid scenarios. This will provide more
insights into the performance of the technique in
comparison to existing text-entry methods in the literature.

In addition to the limitations of our study, there is also room
for performance improvements of the techniques we tested.
SwipeZone users improved over time, and achieved almost
9 WPM by the end of the trials. However, this was lower
than the performance in the original Swipeboard study [7],
for various possible reasons. Foremost, the original
Swipeboard study was run on a simulated watch-sized
screen using an iPad rather than an actual wearable device.
As such, usability challenges due to a small form factor
were simulated but not fully tested. Second, the prior study
was based on a reduced phrase set consisting of only 5
letters, to intentionally accelerate learning times. While this
shed light on the novice to expert transition, it makes it
difficult to directly compare our results.

The observed error rates will also need to be addressed
before our tested techniques could be deployed. Our initial
study shows that there is inherent user error in the gestures
being performed. Our second study shows that eliminating
diagonal gestures helps, but doesn’t eliminate errors. As
with prior research [7, 22], we did not include statistical
language models or advanced error correction. Including
such techniques could be one way to reduce error rates.

FUTURE WORK
For the SwipeZone technique, the tactile feedback allowed
users to know where their finger was, but only once it was
down. Users had to rely on their proprioception to touch
down on the correct area. Technologies that provide mid-air
tactile feedback could be an interesting way to allow users
to know which zone their finger was above.

Fatigue is another issue to be explored further. Because of
our prolonged study, we allowed users to rest their elbow
during the text entry task, and to perform the study from a
seated position. It would be important for future work to
formally investigate fatigue issues and look at how the text

entry would be impacted by different postures (standing,
lying down) or activities (standing, walking, riding a bus).

Given our work is the first known working implementation
of a gesture-based approach for smart eyewear text entry,
there was no clear baseline comparison. However, there is a
large design space of possible adaptions from the mobile
text entry literature. A thorough investigation and
evaluation of this design space is beyond the scope of our
work but would be interesting for future studies.

It is also important to discuss the generalizability of our
results. Our goal was to evaluate the feasibility of gesture-
based text entry on smart eyewear. As the most readily
available device, we choose to implement and evaluate our
techniques using a Google Glass. We believe our
techniques and high-level results generalize to other smart
eyewear devices that are being manufactured with on-
device touch pads (SiME Smart Glasses, Recon Jet).
However, the exact dimensions of each device’s touch pad
may differ, and it would be interesting to understand how
much impact this would have on our results and
observations. Similarly, it would be interesting to
investigate adaptations of the technique to other types of
wearable devices that may have similarly sized touchpads,
such as fitness bands and electronic clothing.

CONCLUSION
We have investigated the feasibility and human factors
associated with performing gesture-based text entry on the
side touch pad of smart eyewear, and both demonstrated
and compared two methods of performing text entry using
this input area. Our study reveals that our redesign of the
Swipeboard technique offers benefits, and that text entry is
possible using smart eyewear as both the input and output
device. We hope this work can inform and inspire future
work on gesture-based text entry for smart eyewear devices.

REFERENCES
1. Amma, C., Georgi, M., & Schultz, T. Airwriting:

Hands-free mobile text input by spotting and continuous
recognition of 3D-space handwriting with inertial
sensors. ISWC ’12. 52-59.

2. Arif, A. S., Pahud, M., Hinckley, K., & Buxton, B.
(2014). Experimental study of stroke shortcuts for a
touchscreen keyboard with gesture-redundant keys
removed. Graphics Interface. 43-50.

3. Bajer, B., MacKenzie, I. S., & Baljko, M. (2012).
Huffman Base-4 Text Entry Glove (H4 TEG).
In International Symposium on Wearable Computers.
41-47.

4. Blasko, G. and Feiner, S. Evaluation of an Eyes-Free
Cursorless Numeric Entry System for Wearable
Computers. Wearable Computers, (2006), 21–28.

5. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. Pad++: A zoomable graphical
sketchpad for exploring alternate interface
physics. JVLC. 1996, 7(1), 3-32.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

151

6. Castellucci, S. J., & MacKenzie, I. S. Graffiti vs.
unistrokes : an empirical comparison. CHI ’08. 305-308.

7. Chen, X. A., Grossman, T., & Fitzmaurice, G.
Swipeboard: A Text Entry Technique for Ultra-Small
Interfaces That Supports Novice to Expert Transitions.
To appear UIST ’14.

8. Clawson, J., Lyons, K., Starner, T., & Clarkson, E.
(2005). The impacts of limited visual feedback on
mobile text entry for the twiddler and mini-qwerty
keyboards. International Symposium on Wearable
Computers. 170-177.

9. Hong, J., Heo, S., Isokoski, P., & Lee, G. (2015).
SplitBoard: A Simple Split Soft Keyboard for
Wristwatch-sized Touch Screens. CHI. 1233-1236.

10. Isokoski, P., & Raisamo, R. (2000). Device independent
text input: A rationale and an example. In Proceedings
of the working conference on Advanced visual
interfaces (pp. 76-83).

11. Kim, S., Sohn, M., Pak, J., & Lee, W. One-key
keyboard: a very small QWERTY keyboard supporting
text entry for wearable computing. OzCHI ’06. 305-308.

12. Kristensson, P. O., & Zhai, S. SHARK 2: a large
vocabulary shorthand writing system for pen-based
computers. UIST ’04. 43-52.

13. Leiva, L. A., Sahami, A., Catalá, A., Henze, N., &
Schmidt, A. (2015). Text Entry on Tiny QWERTY Soft
Keyboards. ACM CHI. 669-678.

14. Li, F. C. Y., Guy, R. T., Yatani, K., & Truong, K. N.
The 1line keyboard: a QWERTY layout in a single line.
UIST ’11. 461-470.

15. Liu, Y., Liu, X., & Jia, Y. Hand-gesture based text input
for wearable computers. ICVS ’06. 8-14.

16. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A.,
Drew, A., & Looney, E. W. Twiddler typing: One-
handed chording text entry for mobile phones. CHI ’04.
671-678.

17. MacKenzie, S. Mobile text entry using three keys. CHI
’02. 27-34.

18. MacKenzie, I. S., & Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. CHI '03 EA. 754-755.

19. MacKenzie, I. S., Soukoreff, R. W., & Helga, J. 1
thumb, 4 buttons, 20 words per minute: Design and
evaluation of H4-Writer. UIST ’11. 471-480.

20. Matias, E., MacKenzie, I. S., & Buxton, W. (1994).
Half-QWERTY: Typing with one hand using your two-
handed skills. CHI Companion. 51-52.

21. Nesbat, S. B. (2003). A system for fast, full-text entry
for small electronic devices. Proceedings of ACM
Multimodal interfaces. 4-11.

22. Oney, S., Harrison, C., Ogan, A., & Wiese, J.
ZoomBoard: a diminutive QWERTY soft keyboard
using iterative zooming for ultra-small devices. CHI ’13.
2799-2802.

23. Partridge, K., Chatterjee, S., Sazawal, V., Borriello, G.,
& Want, R. TiltType: accelerometer-supported text entry
for very small devices. UIST ’02. 201-204.

24. Perlin, K. Quikwriting: continuous stylus-based text
entry. UIST ’98. 215-216.

25. Rico, J., & Brewster, S. Usable gestures for mobile
interfaces. CHI ’10. 887-896.

26. Rico, J., & Brewster, S. 2010. Gesture and voice
prototyping for early evaluations of social acceptability
in multimodal interfaces. International Conference on
Multimodal Interfaces and the Workshop on Machine
Learning for Multimodal Interaction. Article 16.

27. Rosenberg, R., & Slater, M. The chording glove: a
glove-based text input device. ToSMC. 1999, 29(2), 186-
191.

28. Wigdor, D., & Balakrishnan, R. TiltText: using tilt for
text input to mobile phones. CHI ’03. 81-90.

29. Wigdor, D., & Balakrishnan, R. A comparison of
consecutive and concurrent input text entry techniques
for mobile phones. CHI ’04. 81-88.

30. Wobbrock, J.O., Fogarty, J., Liu, S.-Y.S., Kimuro, S.,
and Harada, S. The angle mouse: target-agnostic
dynamic gain adjustment based on angular deviation.
CHI ’09, 1401–1410.

31. Wobbrock, J. O., Myers, B. A., & Kembel, J. A.
EdgeWrite: a stylus-based text entry method designed for
high accuracy and stability of motion. UIST ’06. 61-70.

32. Zhao, S., Agrawala, & Hinckley, K. Zone and polygon
menus: using relative position to increase the breadth of
multi-stroke marking menus. CHI’06. 1088-1086.

Text Entry MobileHCI'15, August 24–27, Copenhagen, Denmark

152

	Typing on Glasses:
	Adapting Text Entry to Smart Eyewear
	ABSTRACT
	INTRODUCTION
	Related work
	Text Entry Techniques for Small Form Factors
	Text Entry Techniques for Head-Mounted Displays
	Gesture-based Text Entry Techniques

	adapting Swipeboard to smart EYEWEAR
	Reviewing Swipeboard: How It Works
	Performance Model
	Adaptation to Smart Eyewear

	study 1 – atomic gestures
	Apparatus
	Participants
	Design
	Procedure
	Results and Analysis
	Analyzing and Visualizing Swiping Gestures
	Building Models to Recognize Swiping Directions
	Execution Times

	SWIPEZONE
	STUDY 2: Text entry evaluation
	Apparatus
	Participants
	Design
	Procedure
	Results and Analysis
	Character Entry Time
	Words per Minute (WPM)
	Performance Model
	Errors

	limitations
	Future work
	Conclusion
	References

