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One promising method to provide text input on smart 
eyewear devices, that has yet to be explored, is to use the 
device’s built in touch input. Specifically, a number of 
smart eyewear devices are now including a touchpad for 
gesture-based input on the side of the glasses (e.g. Google 
Glass, SiME Smart Glasses, Recon Jet, Optivent Ora). 
However, given their limited input space of these 
touchpads, text entry may still be difficult.  

Recent research on Smart Watch interaction has helped 
identify a number of promising techniques for text-entry 
which require very small input real estate. These include 
ZoomBoard [22], SplitBoard [9], Callout [13], and ZShift 
[13]. However, these techniques all require direct target 
acquisition on the display surface. In contrast, Swipeboard 
is a watch-based technique that specifies each character 
using only two directional gestures: the first selects a 
subgroup of keys and the second specifies a key within the 
subgroup [7]. Such gesture-based methods offer a subtle, 
effective and low-cost text entry solution. More 
importantly, the technique is target-agnostic supporting 
eyes-free input, making it a promising candidate for use on 
the side touch pad of smart eyewear. However, this 
technique has yet to be implemented, deployed or tested on 
smart eyewear.  

In this paper we investigate the limitations and feasibility of 
adapting a gesture-based text entry technique (Swipeboard) 
to smart eyewear. In our initial study we find that the 
unique configuration of a smart eyewear touch pad makes it 
difficult to distinguish between the 8 atomic directional 
gestures, and that diagonal swipes take longer to perform. 
To address this issue, we proposed a new design called 
SwipeZone. SwipeZone takes advantage of the relatively 
wider dimension on the side touch pad and divides it into 
three zones. The diagonal gestures of Swipeboard are 
replaced with zone-specific vertical gestures (Figure 1).  

Figure 1. SwipeZone divides the width of a smart eyewear side 
touch pad into three zones, swiping down on the front zone 
selects the lower-left group ‘ZXC’, then swiping to the back 

selects ‘C’ – the rightmost key in the group. 

ABSTRACT 
Text entry for smart eyewear is generally limited to speech-
based input due to constraints of the input channels. 
However, many smart eyewear devices are now including a 
side touchpad making gesture-based text entry feasible. The 
Swipeboard technique, recently proposed for ultra-small 
touch screens such as smart watches, may be particularly 
suitable for smart eyewear: unlike other recent text-entry 
techniques for small devices, it supports eyes-free input. 
We investigate the limitations and feasibility of 
implementing Swipeboard on smart eyewear, using the side 
touch pad for input. Our first study reveals usability and 
recognition problems of using the side touch pad to perform 
the required gestures. To address these problems, we 
propose SwipeZone, which replaces diagonal gestures with 
zone-specific swipes. In a text entry study, we show that 
our redesign achieved a WPM rate of 8.73, 15.2% higher 
than Swipeboard, with a statistically significant 
improvement in the last half of the study blocks.  

INTRODUCTION 
Smart eyewear and heads up displays enable always-
available access to information, yet only provides limited 
interaction possibilities due to its small and wearable form, 
making tasks like text entry extremely hard. One solution is 
to use a supplementary device, such as the Twiddler [16]. 
However, having to carry or be tethered to an additional 
device defeats the purpose of smart eyewear, which is 
meant to provide unobtrusive and immediate access to 
information. Vision-based techniques have also been 
explored [15]; yet they remain a suboptimal as such 
techniques are often computationally expensive and could 
potentially be error-prone due to the uncertainty of the 
environment. Voice input may be useful in certain 
situations, but when surrounded by peers it might incur 
privacy concerns and be socially unacceptable [25, 26]. 
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Our second study tests both Swipeboard and SwipeZone on 
a smart eyewear unit using a text entry task. The results 
show that gesture-based text entry is feasible on a smart 
eyewear touch pad. The SwipeZone redesign outperforms 
the original Swipeboard technique (15.2% faster), however, 
only reaches statistical significance in the final half of the 
study. Overall, our main contributions are the first smart 
eyewear text entry techniques that utilize the built-in touch-
sensitive input area, and two studies that investigate the 
feasibility of the techniques. While these contributions are 
based on studies using a Google Glass device, the results 
generalize to a variety of smart eyewear devices that our 
now being built with embedded touch pads.  

RELATED WORK 
To understand the challenges of smart eyewear’s small and 
wearable form factors, we review text entry research for 
both devices with very small input areas and head-mounted 
displays. We also review gesture-based text entry 
techniques to inform our design on smart eyewear. 

Text Entry Techniques for Small Form Factors 
Past work has explored various text entry techniques for 
devices with very small form factors. Earlier work proposed 
the use of a miniaturized wearable keyboard [20].  More 
recent work propose the use of motion sensors, e.g., using 
tilting to specify characters for text entry [23, 28]. 
MultiWidget uses a dialing gesture along the watch’s edges 
to specify a numeric value [4].  

Recent work has also looked at the use of tiny QWERTY 
soft keyboards for entering text on small devices [13]. Such 
techniques have leveraged zooming [22], callouts [13], and 
swiping gestures [7, 9]. While not necessarily meant for 
small displays, Arif et al. combine a QWERTY keyboard 
with directional strokes to enter special keys [2]. 

Another approach is using alternate key mapping, such as 
chording, key selections or gestural shortcuts. For example, 
Wigdor and Balakrishnan add three chording keys to speed 
up typing on a numeric phone keypad [29]. Mackenzie 
demonstrates the use of three keys to enable selection-based 
text entry [17]. MessageEase places characters on a 3x3 
matrix of keys, and characters are entered using a two-
keystroke scheme [21]. The 1line keyboard incorporates 
touch into key selection, reducing the keyboard into one 
line of keys [14].  

Text Entry Techniques for Head-Mounted Displays 
Head-mounted displays have been used to create immersive 
or mobile experiences with digital information. However, 
their immersive and mobile nature also prevents the user 
from accessing regular input devices to perform text entry 
tasks. To solve this problem, researchers have experimented 
with various customized input devices. Twiddler is a one-
handed chording keyboard that allows for eyes-free text 
entry for mobile or wearable devices [16]. This technique 
was compared to Miniature QWERTY keyboards in follow 
up-work [8]. 

The chording glove [27] and Huffman Base-4 Text Entry 
Glove [3] embed buttons into the glove and users can 
specify characters directly using hand gestures. Liu et al. 
propose a vision-based mechanism that uses a head-
mounted camera to recognize mid-air handwriting [15]. 

Other researchers focused on using a wrist-worn input 
device for text entry, which is also a potential solution for 
typing while wearing a head-mounted display. For example, 
Airwriting employs inertial sensors and machine learning 
techniques to recognize handwriting based on the hand’s 
motion [1]. One-key keyboard augments one single key to 
sense a user’s fingertip position, thus allowing typing on a 
full QWERTY keyboard [11].  

While all this work has demonstrated various possible text 
entry solutions for head-mounted display, they often require 
additional input devices, or rely on vision-based recognition 
that is potentially high-cost and error-prone. Minuum has 
proposed the use of the 1line keyboard for Google Glass in 
a proof-of-concept video1, but the technique has yet to be 
implemented or evaluated. Our goal is to enable a text entry 
mechanism that is lightweight and self-contained within 
modern head-mounted displays, such as the Google Glass.  

Gesture-based Text Entry Techniques 
Gestural shortcuts can also be effective with small form 
factors. Chen et al. [7] summarized two ways of encoding 
characters with gestures: a continuous approach maps a 
word or a character to a continuous stroke (e.g., MDITIM 
[10], Graffiti [6], EdgeWrite [31], Shark2 [12]), and a 
discrete approach maps each character to a number of 
symbolic tokens (e.g., H4-Writer uses a base-4 encoding 
[19] and Quikwriting uses base-9 [24]).  

For example, EdgeWrite uses stylus-based gestures guided 
by the physical edges of a device, thus making it easier and 
faster to perform [31]. In contrast, Swipeboard specifies a 
character by two swipes: novices learn the gesture by 
swiping to locate a specific key while experts gradually 
learn and memorize the swipe combination for each 
character [7].  

Given their limited input real-estate, discrete techniques, 
such as Swipeboard [7], may be preferable for smart 
eyewear devices. Furthermore, gesture-based input like 
Swipeboard is ‘target-agnostic’ [30], making it promising 
for smart eyewear, as absolute touch coordinates are never 
required. We are unaware of any implementations or 
evaluations of such techniques for smart eyewear in the 
research literature. 

In summary, our review of the literature indicates that there 
are no existing gesture based text entry techniques for smart 
eyewear, and that of the existing techniques for small form 
factors, SwipeBoard holds particular promise. As such, we 
focus the remainder of the paper on adapting SwipeBoard 
to a smart eyewear form factor. 

1 http://minuum.com/google-glass-keyboard/ 
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ADAPTING SWIPEBOARD TO SMART EYEWEAR 
To adapt the gesture-based Swipeboard technique to smart 
eyewear, we first review its design and performance model. 
We then describe our implementation and initial experience 
of using it on a smart eyewear device. 

Reviewing Swipeboard: How It Works 
Swipeboard is a recently developed text entry technique 
that encodes each alphabetic character into a series of two 
touch actions. The technique utilizes the traditional 
QWERTY keyboard layout, to allow users to leverage their 
existing spatial memory of character locations.  

The keyboard is divided into nine regions (Figure 2a), each 
containing 3 (e.g., ‘ASD’) or 4 (e.g., ‘RTYU’) characters. 
The first touch action is used to select the desired region. 
The swipe is in one of 8 directions (e.g. swiping left for 
“ASD” or up and to the right for “IOP”.) A tap is used to 
select the middle region (“FGH”). Once a region is 
selected, a zoomed in view is displayed ((Figure 2b). 

 
Figure 2. The original Swipeboard technique. a) The first 
swipe specifies one of the nine regions subdivided from a 

QWERTY keyboard. b) The second swipe specifies the 
character, in this example, ‘D’. Figure from Chen et al. [7]. 

The second action is used to select the desired character 
within a region. Swiping left selects the left character, 
tapping selects the center character, and swiping right 
selects the right character. In the one case of four characters 
(‘RTYU’), swiping left selects ‘R’, up-left selects ‘T’, up-
right selects ‘Y’ and right selects ‘U’. The user can swipe 
down to cancel the selected region and return to the first 
level keyboard view. 

Additional gestures are used for other functions. A double-
swipe down-left deletes a character, and double-swipe 
down-right enters a space, and a double-swipe up switches 
to a symbol and number keyboard. 

An important property of Swipeboard is that it is target 
agnostic: the actions can occur anywhere on the display, 
and no spatial target selection is required. This makes it 
particularly appropriate for smart eyewear, since users 
cannot see where their finger lands on its side touchpad. 

Performance Model 
To understand the limits of its performance, a four-stage 
performance model is used to describe the execution time 
(T) for individual characters using the Swipeboard 
technique. Each character consists of two input events. 
Each input event consists of a planning phase, when the 
finger is up (Tu1, Tu2), and an action phase, when the finger 

is down (Ta1, Ta2). Thus, the completion time for a character 
is as follows: 

T = Tu1 + Ta1+ Tu2 + Ta2 
Chen et al. [7] used previous performance model data to 
estimate that in optimal conditions an expert could perform 
at 464ms per character, or 25.87 WPM. Later, we relate our 
study results to this performance model.  

Adaptation to Smart Eyewear 
In our initial implementation, we used a Google Glass unit 
and developed a standalone Android application using the 
ADT plugin for the Eclipse IDE. The implementation 
reproduced the Swipeboard technique exactly. The X and Y 
coordinates were obtained through the Android 
MotionEvent object that the side touch pad produces.  

There were some issues with this initial implementation 
which seemed to limit the efficiency of the technique. First, 
taps, which were defined by a travel distance of less than 10 
pixels, were sometimes being recognized as swipes. This is 
due to the higher pixel density of the input device. Second, 
and more importantly, the diagonal swipes, which were 
detected at 45° angles, were difficult to perform. The short 
and wide nature of the touchpad afforded wider diagonal 
gestures at an angle much less than 45°.  

To better understand and address these issues, we 
performed an experiment to investigate how accurately 
users could perform the atomic gestures required for the 
Swipeboard technique, on the Google Glass touch pad.  

STUDY 1 – ATOMIC GESTURES 
The Swipeboard technique uses 8 directional gestures and a 
tap as the building blocks for text entry. The technique was 
previously validated on a watch-sized input area (12mm by 
12mm). However, the dimensions of the touch pad on smart 
eyewear may be quite different. For example, with Google 
Glass, the touch pad is 76.2mm by 10.4mm, with a 
resolution of 1366x187. It is unclear how well 
Swipeboard’s atomic gestures can be performed and 
distinguished on touch pads with this unique form factor.  

Apparatus 
The study was performed using a Google Glass unit. The 
device was tethered to a laptop via a USB cable so that the 
screen output could be monitored by the experimenter.  

Participants 
We recruited 10 participants (1 female, 9 male), with an 
average age of 33.2. Nine of the participants were right 
handed and all participants used their right hand for input, 
as this is the side that has the touchpad on the Google Glass 
device. The participants were recruited from our institution 
and were not compensated. None of the participants had 
extensive experience with smart eyewear.  

Design 
A repeated measures within-participant design was used. 
The independent variables were Direction (N, NE, E, SE, S, 
SW, W, NW, TAP) and Block (1-8). Participants performed 
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the study in one session lasting approximately 10 minutes. 
The session was broken up into 8 blocks. Each block 
consisted of 36 trials, with each gesture appearing four 
times, in randomized order. This resulted in a total of 288 
trials per participant, and a total of 2880 data points overall. 

Procedure 
Participants sat in a chair facing a black background, which 
allowed them to clearly see the content on the Google Glass 
display. The background was approximately 2 feet away 
from the user’s head position. We allowed users to rest their 
elbows on the chair armrest to prevent fatigue.   

The trial started by displaying the gesture direction. An 
arrow inside a square was used for the eight directional 
strokes, and a dot in the middle of the square was used for 
TAP (Figure 3a). The user then performed the associated 
gesture by swiping on the side touch pad. We mapped the 
right side of the display to the back of the Google Glass 
touch pad, so a swipe from front to back would perform the 
EAST stroke (Figure 3b). This mapping seemed more 
intuitive to users during pilot testing, and is the default 
Google Glass mapping. 

 
Figure 3. a) Exemplar visual stimulus (NE, TAP, S); b) 

illustration of the mapping of an EAST stroke. 

The start and end coordinates of each touch event were 
logged, as was the time between the two events. There were 
no “errors” for this study, since the purpose was to measure 
users’ accuracy of performing the gestures. However, if 
either the X or Y component of the stroke was in the 
opposite direction of the correct input, the input was 
ignored and the user was prompted to try again. Such cases 
indicated a mistaken interpretation of the desired gesture, 
not an inaccuracy in performing it. When a gesture was 
entered, the next trial was immediately displayed.  

Results and Analysis 

Analyzing and Visualizing Swiping Gestures 
We illustrate the end points for each atomic swipe/tap 
gesture using a scatterplot in Figure 4. Each gesture is 
color-coded. The scatterplot shows the X coordinates of the 
horizontal and diagonal gestures are ‘stretched’, due to the 
wide form factor of the touchpad. Figure 5a shows the 
normalized vectors computed from the original touch event 
data. There is some degree of overlap between adjacent 
gestures, which is further illustrated in Figure 5b: it shows 
the possible ranges of each swipe, computed from their 
mean ±3 standard deviations. It shows that while the 
directionalities of the horizontal swipes (E and W) are fairly 
uniform, the vertical and diagonal swipes, however, are 
widely distributed and overlap with each other. 

 
Figure 4. Scatterplot of each gesture’s end points in Study 1. 

 
Figure 5. Directionalities of the atomic gestures from Study 1: 

scatterplot of the normalized vectors computed from each 
gesture (a); possible ranges of each swipe, computed from 

their mean  ± 3× standard deviation (b). 

Building Models to Recognize Swiping Directions 
The above data indicates that using the vector angles to 
determine a stroke’s direction may not be effective. Instead, 
we use the Cartesian coordinates (corresponding to the end 
points of the swipes). As shown in Figure 6a, we can define 
8 quadrants by a δx and δy parameter. For example, a stroke 
with X > δx and Y > δy would be classified as NE.  

We use an iterative search to find the optimal parameters to 
determine swipe direction. The first step in our recognition 
is to classify a tap, which is defined by touch points whose 
distance to the origins is smaller than a certain threshold. 
We use a bounding box with dimensions tapx and tapy. We 
then distinguish between the different swipes by finding 
appropriate values of δx and δy.  

To find the optimal parameter values we perform a naïve 
stepwise iterative search across all possible combinations of 
the parameter pairs, first (tapx, tapy), and then (δx and δy). 
We iterate with steps of 1px. We calculated the optimal 
parameters and resulting accuracy across the entire data set. 
The optimal values for recognizing a TAP (tapx = 53, tapy = 
42) resulting in an accuracy of 99.97%. The optimal values 
of δx and δy were 136 and 59, with an accuracy of 94.0%. 
This method would result in a 6% error rate. 

 
Figure 6. a) The gestures can be determined based on 

coordinates, δx and δy, which groups the end points of each 
swipe into eight swiping directions. b) Execution time by 

gesture shows diagonal swipes took significantly longer. Error 
bars are standard error. 
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Execution Times 
A repeated measures ANOVA showed that the direction 
had a significant effect on the execution time of the gestures 
(F7, 63 = 6.753, p < .0001). The diagonals seemed to be 
consistently slower than their adjacent non-diagonal 
(straight) strokes. To confirm this, we performed an 
additional analysis comparing the gesture types (Straight, 
Diagonal, or Tap). The analysis showed that the gesture 
type had a significant effect on the execution time (F2, 18 = 
43.4, p < .0001). The average times were 163.04ms for 
Straight, 195.99ms for Diagonal, and 87.26ms for Tap 
(Figure 6b). Post-hoc pairwise comparison using 
Bonferroni correction showed that the difference between 
all pairs was significant (p < .05).  

SWIPEZONE 
The results of our first study suggest that distinguishing 
between Swipeboard’s eight-direction swiping may be 
feasible, however with some level of error. The results also 
show that diagonal strokes are significantly slower than 
non-diagonal swipes and taps. These results motivate us to 
propose an alternative design that fits the input 
characteristics of smart eyewear. Our proposed technique, 
SwipeZone, does so by eliminating diagonal swipes.  

Our first modification in designing SwipeZone is to slightly 
change to the QWERTY layout. The original layout requires 
swiping diagonally at the second level when typing from 
the group ‘RTYU’. To eliminate diagonal swipes, we move 
‘P’ to the second row, and ‘L’ to the third, replacing the 
comma (Figure 7). This layout eliminates the need for 
diagonal swipes in the second level. 

   
Figure 7. Swipeboard’s layout is consistent with QWERTY but 

has a 4-character group. Our modified layout shifts the 
locations of  ‘P’ and ‘L’ so each group has three characters. 

Our second modification is to eliminate diagonals from the 
first level, by replacing them with zone specific vertical 
swipes, similar in spirit to Zone Menus [32]. In particular, 
we leverage the relatively wide dimensions of smart 
eyewear touch pads, and divide the input area horizontally 
into three equally sized zones. For tactile reference, we 
include a strip of tape on the middle zone (Figure 8). The 
tape’s rough surface is easily distinguishable from the other 
two zones’ smooth surfaces. 

With SwipeZone, the diagonal gestures are replaced by 
vertical swipes in the corresponding zones. For NE and SE 
the user swipes up and down in the front zone; for NW and 
SW the user swipes up and down in the back zone: for N 
and S, the user swipes up and down in the middle zone. The 
taps and horizontal swipes are still target agnostic. For 
example, to type ‘C’, the user first swipes down in the front 
zone, which selects ‘ZXC’. The user then swipes 

horizontally to select ‘C’ (Figure 9). Similar to the 
Swipeboard technique, user can cycle through alternative 
keyboard characters by swiping up twice. 

 
Figure 8. A strip of blue tape helps distinguish the three zones 

through tactile feedback. 

We draw borders around the four regions that require zone-
specific swipes, to help remind users that a zone-based 
gesture is required (Figure 9). We also show the zoomed-in 
region in-place while keeping the entire keyboard visible in 
the background. This allows users to plan their next 
character in parallel to performing the second level gesture 
for the current character (Figure 9). 

    
Figure 9. Visual lines help distinguish the characters which 
require a swipe in one of the side zones. Level 2 shows the 

selected region in-place, so the entire keyboard is still visible. 

STUDY 2: TEXT ENTRY EVALUATION 
To evaluate our SwipeZone technique for text entry on 
smart eyewear, we use a traditional text entry task to 
measure its performance in comparison with Swipeboard. 
We are not aware of any existing technique that has been 
implemented to use the side touch pad of smart eyewear for 
text entry. Thus, we do not include a baseline technique for 
comparison; however, we can contrast our results to prior 
studies on text entry. Our primary goals are to understand 
how feasible text entry is, if at all, on smart eyewear, and to 
identify if there are any performance differences in the 
SwipeZone and Swipeboard techniques. A broader 
evaluation of the design space of possible smart eyewear 
text entry techniques is left to future work.  

Apparatus 
The apparatus was the same as the first study.  

Participants 
We recruited 16 participants (7 female, 9 male), with an 
average age of 28.3. All of the participants were right 
handed and all used their right hand for the text entry task. 
The participants were recruited externally from a recruiting 
list that was generated from online postings, and were 
provided with $50 gift card. None of the participants had 
prior experience using Google Glass.  
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Design 
A repeated measures mixed design was used. The between-
participant independent variable was the technique 
(Swipeboard, SwipeZone). The within-participant 
independent variable was Block (1-20). Participants 
performed the study in one session lasting approximately 80 
minutes. The session was broken up into 20 blocks. Each 
block consisted of 10 trials. In each trial, the user typed in a 
single 5-letter word, randomly chosen from Mackenzie’s 
phrase set [18]. This resulted in a total of 200 trials per 
participant, and a total of 3200 trials overall. 

Procedure 
Before the study began, the assigned technique was 
demonstrated to participants using a Samsung Galaxy S4 
phone. After explaining the technique, users performed a 
warm-up block on the phone, which consisted of 10 words. 

The physical set up and seating position was the same as 
described in Study 1. Before the start of each trial, the 
system displayed a 5-letter word. After reading the word the 
participant tapped to begin the trial. The word then 
disappeared and the keyboard was displayed. This 
prevented participants from reading the word while the trial 
time was being timed. The participant used the assigned 
technique to transcribe the word (Figure 10). If the user 
typed the wrong character a beep was sounded and the 
correct word was displayed on the screen. However, the 
incorrect letter was not typed, so that users would not need 
to delete characters. The user would need to retry until they 
typed the correct character. This was recorded as a “hard 
error”. We also recorded “soft errors” when the user’s 
initial stroke activated the wrong region of the keyboard. 
The trial was completed when all five characters were 
correctly typed. 

 
Figure 10. Users performed the text entry task on a Google 
Glass unit. Correctly typed letters are displayed in white. 

For Swipeboard, we used the updated layout with each 
group containing only 3 characters (for consistency with 
SwipeZone). The Cartesian tessellation (Figure 6a) was 
used to classify the gestures. 

Results and Analysis 

Character Entry Time 
The main measurement was the character entry time. Our 
analysis is based on error-free characters (we also provide 
an analysis of errors later in this section). Similar to prior 
work [7] we divide each character entry time into four 
phases: the time until the first touch event (First Up), the 
time taken for the first swipe or tap (First Action) the time 
until the second touch event (Second Up) and the time taken 
for the second swipe or tap (Second Action). The total 
character entry time was the sum of these four phases. 

We first analyze the per-character completion time for 
error-free trials. A repeated measures ANOVA showed a 
main effect for block (F19, 266 = 34.9, p < .0001), but did not 
reach significance at the p < .05 level for the keyboard type 
(F1, 14 = 3.350, p = 0.089). The overall per-character 
completion times were 1.97s for Swipeboard and 1.67s for 
SwipeZone. The lack of a significant effect, despite a 
15.2% performance difference, is likely due to smaller 
sample-size.  

 
Figure 11. Error-free character completion time by block. 

As illustrated in Figure 11, the performance differences do 
seem to increase as training continues. When we repeat the 
analysis on just the last 10 blocks, the difference does reach 
a significant level (F1, 14 = 5.136, p < 0.05). The entry times 
for the last 10 blocks are 1.812s and 1.467s for Swipeboard 
and SwipeZone, respectively. 

The effect of the actual character being entered was also 
significant (F25, 375=16.9, p < .0001). Figure 12 illustrates 
the character entry times for each character. The entry times 
for most common characters are fairly uniform. 
Unsurprisingly, ‘G’ is one of the fastest, since its gesture 
consists of two taps. The three slowest characters are those 
that appear rarely in the vocabulary set (J, X, Q). This 
shows evidence that learning with the technique occurs not 
only at the technique level, but may also occur at the 
individual character level.  
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Figure 12. Completion times for each character. Uncommon 
characters (e.g., J, X, Q) took significantly longer, suggesting 

learning also happened at the individual character level. 

Words per Minute (WPM) 
Figure 13 shows the error-free WPM rates for each of the 
techniques. In the last block, the WPM rates were 8.73 for 
SwipeZone, and 7.14 for Swipeboard. Both rates increase 
according to the Power Law of Learning, fitting to the 
curves at R2 = 0.95 for SwipeZone and R2 = 0.90 for 
Swipeboard. If these trends continued, SwipeZone would 
reach 10 WPM after a total of 40 blocks. 

 
Figure 13. WPM rates and the associated power curves. 

Performance Model 
To further understand the difference in the two techniques, 
we look at a breakdown of the character entry time, by each 
stage of the performance model (Figure 14).  

An interesting effect is that the character entry times are 
dominated by the First Up phase, where the user locates 
their character and plans the gesture input. Anecdotally, we 
observed that users, after some blocks of training, started to 
plan for both levels of the gesture before performing the 
associated actions. This could explain why the Second Up 
phase is much shorter. Figure 14 also shows that the actual 
stroke times (First Action, Second Action) were much 
shorter than the two phases that involved decision-making.  

The other interesting observation is that the main difference 
between the two techniques is at the Second Up phase. The 
average Second Up times were 564ms for Swipeboard and 

408ms for SwipeZone. This difference was the one phase 
where Technique had a significant effect (F1, 14 = 10.695, p 
< .01). This increased time seemed to be a result of the 
Swipeboard users waiting to see if their first stroke was 
interpreted correctly or not, whereas the tactile feedback of 
SwipeZone gave users immediate feedback.  

 
Figure 14. Times for the four phases of the performance model 

(based on Chen et al. [5]). SwipeZone contributed to a 
significantly shorter Second Up phase. (*p < .01) 

Errors 
We analyzed both soft errors (errors in the first level 
gesture) and hard errors (errors at the second level gesture). 
The soft error rates were 17.8% for Swipeboard and 15.8% 
for SwipeZone. The difference was not significant. The 
hard error rates were also not significantly different – 9.3% 
for Swipeboard and 9.1% for SwipeZone. The majority of 
the hard errors were due to errors made at the first level: 
users continued with the character entry (causing a hard 
error) rather than cancelling the erroneous first-level 
selection (causing a soft error). The hard error rate, when 
the first-level selection was correct, was 2.4% and 1.8% for 
Swipeboard and SwipeZone, respectively. 

These results show that the majority of errors made with the 
techniques resulted from the first level. And while the 
SwipeZone technique reduced the execution time in Second 
Up phase, the technique itself is still error prone. We 
hypothesize, based on our observations, that a proportion of 
these errors are caused by users choosing the wrong gesture 
to perform (e.g. E instead of W), and not choosing the right 
gesture but performing that gesture improperly (e.g. 
swiping in the wrong zone).  

LIMITATIONS 
As an initial study into the issue of text entry on smart 
glasses, the study design has a number of limitations which 
should be considered and may impact for replicability of 
the results.  

First, to simplify the task for users, we prevented incorrect 
characters from being displayed, so that users would not 
have to correct those errors. The impact of error correction 
on performance thus needs to be better understood. 
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Second, users entered short words instead of the phrases 
typically used in text entry studies. This again was done to 
simplify the task for participants. Assessing the impact of 
cognitive load when full phrases need to be entered should 
be investigated further.  

Our study also consisted of one long session, instead of 
multiple shorter sessions. Having multiple sessions could 
help understand learning retention, and could also reduce 
fatigue on behalf of the users. While we did provide breaks 
throughout our study, participants may have had lower 
performance in the final blocks due to fatigue. Having 
multiple sessions could also increase the total amount of 
data which is captured.  

In general, this study may be considered a feasibility study 
to show that the technique does in fact work, where more 
formal analysis should be conducted in the future to gather 
specific metrics of the techniques, such as WPM and KSPC 
in more externally valid scenarios. This will provide more 
insights into the performance of the technique in 
comparison to existing text-entry methods in the literature. 

In addition to the limitations of our study, there is also room 
for performance improvements of the techniques we tested. 
SwipeZone users improved over time, and achieved almost 
9 WPM by the end of the trials. However, this was lower 
than the performance in the original Swipeboard study [7], 
for various possible reasons. Foremost, the original 
Swipeboard study was run on a simulated watch-sized 
screen using an iPad rather than an actual wearable device. 
As such, usability challenges due to a small form factor 
were simulated but not fully tested. Second, the prior study 
was based on a reduced phrase set consisting of only 5 
letters, to intentionally accelerate learning times. While this 
shed light on the novice to expert transition, it makes it 
difficult to directly compare our results. 

The observed error rates will also need to be addressed 
before our tested techniques could be deployed. Our initial 
study shows that there is inherent user error in the gestures 
being performed. Our second study shows that eliminating 
diagonal gestures helps, but doesn’t eliminate errors. As 
with prior research [7, 22], we did not include statistical 
language models or advanced error correction. Including 
such techniques could be one way to reduce error rates. 

FUTURE WORK 
For the SwipeZone technique, the tactile feedback allowed 
users to know where their finger was, but only once it was 
down. Users had to rely on their proprioception to touch 
down on the correct area. Technologies that provide mid-air 
tactile feedback could be an interesting way to allow users 
to know which zone their finger was above. 

Fatigue is another issue to be explored further. Because of 
our prolonged study, we allowed users to rest their elbow 
during the text entry task, and to perform the study from a 
seated position. It would be important for future work to 
formally investigate fatigue issues and look at how the text 

entry would be impacted by different postures (standing, 
lying down) or activities (standing, walking, riding a bus). 

Given our work is the first known working implementation 
of a gesture-based approach for smart eyewear text entry, 
there was no clear baseline comparison. However, there is a 
large design space of possible adaptions from the mobile 
text entry literature. A thorough investigation and 
evaluation of this design space is beyond the scope of our 
work but would be interesting for future studies. 

It is also important to discuss the generalizability of our 
results. Our goal was to evaluate the feasibility of gesture-
based text entry on smart eyewear. As the most readily 
available device, we choose to implement and evaluate our 
techniques using a Google Glass. We believe our 
techniques and high-level results generalize to other smart 
eyewear devices that are being manufactured with on-
device touch pads (SiME Smart Glasses, Recon Jet). 
However, the exact dimensions of each device’s touch pad 
may differ, and it would be interesting to understand how 
much impact this would have on our results and 
observations. Similarly, it would be interesting to 
investigate adaptations of the technique to other types of 
wearable devices that may have similarly sized touchpads, 
such as fitness bands and electronic clothing.  

CONCLUSION 
We have investigated the feasibility and human factors 
associated with performing gesture-based text entry on the 
side touch pad of smart eyewear, and both demonstrated 
and compared two methods of performing text entry using 
this input area. Our study reveals that our redesign of the 
Swipeboard technique offers benefits, and that text entry is 
possible using smart eyewear as both the input and output 
device. We hope this work can inform and inspire future 
work on gesture-based text entry for smart eyewear devices. 
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