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ABSTRACT 

Computer simulations can extensively help engineers to gain a better understanding of the 
fabrication processes prior to actually applying them, thus avoiding the manufacturing costs 
associated with trial-and-error for creating new designs. Of particular importance is fiber-
reinforced composite material parts, as their fabrication cost is comparably higher than traditional 
materials such as metals.  In this paper, a hybrid finite element-geometric algorithm for draping 
simulation of woven fabric composites over a triangulated 3D surface is described. In this 
algorithm, the composite fabric is characterized as a group of square or rectangular cells modeled 
via six springs to which a set of physical equations is applied. The values of spring constants are 
representative of the actual material properties. Hence, compared to purely geometrical methods, 
this algorithm leads to a more accurate simulation of wrinkles and distortions, and converges 
significantly faster than purely finite element approaches. The flat contour can also be produced 
naturally along with the draping simulation.  

1. INTRODUCTION 
Nowadays, in the era of automation and advanced manufacturing techniques, computer 
simulations imitating real physical phenomena could help engineers to avoid the time-consuming 
process of trial-and-error for creating new designs. Consequently, developing more reliable 
computer-aided-design (CAD) tools is a necessity in today’s boom of new fabrication 
technologies. By connecting design and simulation, engineers can make decisions about 
downstream behavior like structural performance and manufacturing properties prior to making 
costly mistakes. This workflow is most optimal when a user can quickly understand physical 
process and incorporate them back into the design as soon as possible. However, typical finite 
element solutions take large amounts of time and compute power to get a good result. What if the 
accuracy of a finite element solution could be combined with an explicit geometric approach to 
solve for a solution more quickly? 

In this paper, a hybrid finite element-geometric algorithm for draping simulation of woven fabric 
composites over a triangulated 3D surface is described and shown how this approach can also 
apply to the forming process. Unlike standard kinematic approaches [1], [2], this method 
incorporates geometry as well as material properties in the solution. The structural properties 
representing actual mechanical properties of composite materials are considered without affecting 
the speed of the solution. This technique is built upon the fact that the fabric layers are optimal 
when the amount of distortions (wrinkles) are at a minimum. This assumption causes the 
calculation to be extremely fast with minimal forfeit of accuracy when compared to a true finite 
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element solution. The forming process is becoming more popular in the automotive and 
construction industries as process constraints and cycle times are driving change in traditional 
manufacturing processes. Although the target industries here are those designing and 
manufacturing composite parts, this technique can be leveraged in all fabric-related industries.  

In this algorithm, a fabric, before draping, is considered as a group of square (or rectangular) cells, 
and each cell is modeled by four side-springs and two diagonal springs (Figure 1). These 
assumptions cause a trade-off between accuracy and speed of draping simulation. However, the 
generated results could be trustworthy for the majority of cases, and if more accurate modeling is 
required, other techniques exploiting pure finite element analysis (FEA) [3]–[7] could be 
implemented with considerably higher computational costs (seconds vs hours). 

After draping, a fabric is balanced and consequently has the minimum number of wrinkles 
(minimum distortion energy) when the resultant force of all springs connected to a node is zero. 
Therefore, to ensure this condition, at each iteration of the algorithm, to map new cells onto the 
3D surface, force balance equations of the engaged nodes are solved. More details will be provided 
in the following sections. 

 

Figure 1- Fabric cells represented by six springs 

In the draping process, depending on the surface geometry, the fabric can wrinkle and cells may 
distort and no longer be a perfect square (or rectangle). Shear angle, defined by Equation 1, at each 
fabric node is used as a representation of wrinkles in the fabric at that location (Figure 2). In other 
words, the higher the shear angle is, the more severe the wrinkles are at that location. 

 𝑆ℎ𝑒𝑎𝑟	𝐴𝑛𝑔𝑙𝑒	𝛾 =
𝜋
2 − 𝛼. 

(1) 
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Figure 2- (a) undistorted cell (b) distorted cell 

At each fabric node, the shear angle is the weighted average of the shear angles around that node. 

2. DRAPING ALGORITHM 
Unlike FEA-based methods that require an initial flat (2D) fabric as an input, the algorithm 
described in this paper does not initiate the simulation from a 2D pattern. This is another advantage 
of this method over these techniques.  

There are two ways of initiating the draping algorithm: 

1- From a given starting point 𝑃! (seed point) and propagation direction 𝑡! (local fiber 
orientation at the seed point) 

2- From a given starting point 𝑃! (seed point) and a guide curve 𝑐!.  

The difference between the two methods will be explained in the following sections. Other 
required inputs are: 

• 𝑆: the triangulated surface to be covered by the fabric 
• 𝐿"#$%, 𝐿"&'(: fabric cell size along the sides 
• 𝑘)*+&/𝑘+*#,-.#/ 	: the ratio of spring constants along the sides and diagonal directions. The 

higher this value, the more resistant the fabric is against stretching along the sides versus 
that along diagonals, which results in shear. For isotropic fabrics (which behave like 
unidirectional fabrics), this parameter is close to 1. For fabric composites, it typically has 
a large value, around 200.  

• 𝑏: surface boundary, the boundary of the area of surface 𝑆 to be covered by the fabric 
• 𝑑: Dart curve, if there is any 

The values of spring constants can be achieved through well-known physical experiments such as 
uniaxial tension or picture frame tests. The algorithm, then, proceeds in the following principal 
steps:  

2.1 Perpendicular geodesic paths 

Geodesic calculations are required to propagate fabric cells on surface 𝑆. A geodesic path on a 
surface is the shortest path between different points on that surface. In this step, two perpendicular 
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geodesic paths, along 𝑡! (warp direction) and perpendicular to 𝑡! (𝑡0) (weft direction), are 
computed passing through 𝑃! to the surface boundaries. The algorithm used for geodesic 
calculations can be found in [8]. The very same computation is also performed along −𝑡! and −𝑡0. 
Then, these geodesic paths need to be discretized into a number of equidistance nodes according 
to 𝐿"#$% and 𝐿"&'(. The nodes produced, called anchor nodes, are the first fabric nodes on the 
surface (Figure 3) whose positions remain fixed throughout the fitting process.  

If instead of 𝑡!, a guide curve, 𝑐!, is provided, first this curve is discretized according to 𝐿"#$% and 
𝐿"&'( and also a geodesic path perpendicular to 𝑐! starting from 𝑃! is computed and discretized. 
The rest of the process is the same as in the first case. 

 

 

Figure 3- Discretized geodesic paths on a hemisphere 

At the end of this step, the surface is split into 4 quadrants (Figure 4). All the remaining 
computations, in the rest of the draping algorithm, could be performed independently, and so in 
parallel, in each of these quadrants. This powerful feature reduces the computation time 
considerably as compared to other techniques available in other commercial products. 
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Figure 4- Splitting the surface into four quadrants 

2.2 Cell propagation 
A cell can be propagated if the position of its three nodes is known and only the location of one 
node is unknown. Since after the draping process, no external force is exerted on the fabric, total 
internal forces of each node from the springs linked to it should also be zero.  

2.2.1 Partial cell propagation 

To locate the fourth node of a cell, Equation 2 should be solved. 

 
;(𝐹*)*.(&$.#/

1

*20

=;𝑘*∆𝑙*

1

*20

�⃗�* − �⃗�.-+&	4
B�⃗�* − �⃗�.-+&	4B5

= 0, 

∆𝑙* = 𝑙* − (𝐿!)* , 

(2)  

(a,b) 

where 𝑁 is the number of springs connected to this node, �⃗�.-+&	4 is the position of the fourth node 
on the surface (unknown) and �⃗�* is the position of adjacent fabric nodes to the fourth nodes (node 
4).  The important point here is that 𝑙* is not a Euclidean length. In fact, it is the length of the 
geodesic path connecting the fourth node to other surrounding nodes. Thus, Equation 2 may not 
have an exact one-step solution for �⃗�.-+&	4 and should be solved iteratively. Stopping criterion 
could be ∑ 𝐹*1

*20 < 𝜀 (e.g. 10-6) This process is repeated to generate all possible cells. This step of 
cell propagation is called partial cell propagation. 
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In this step, also, some parallelization could be done. Once a new cell is propagated on the surface 
(Figure 5 a), possible cells along the warp and weft directions could be mapped independently and 
in parallel on the surface (Figure 5 b). 

2.2.2 Complete cell propagation 
For some geometries, however, partial cell propagation, by the procedure explained, could leave 
some areas uncovered. In these cases, there are no more three adjacent free nodes left to locate the 
fourth node of a cell. If this happens, the nodes on the outer boundary of the fabric should be 
detected, and for one of them, another node is located along the warp or weft directions. Then, it 
is checked to see by this extension whether new cells can be generated or not. If so, new cells are 
propagated, otherwise, the same procedure is applied to another node. This process continues until 
the entire area is covered or the surface boundary is detected. This step of cell propagation is called 
complete cell propagation. A simplified overview of cell propagation step is described in Figure 
5. 
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Figure 5- Cell propagation step: (a) generating anchor nodes and first cells (b) Propagating next layer of cells (c) 
Completing partial cell propagation (d) Placing a node along warp/weft (e) Propagating new cells (f) Cell 

propagation step completed 
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2.3 Global balance of nodal internal forces 
Although Equation 2 is locally solved for all nodes, by propagating new nodes this constraint could 
be violated for some nodes. Thus, after the cell propagation step, for all nodes, Equation 2 is 
checked, and if required their position is changed until total internal spring forces at each node is 
within the predefined tolerance.  

Figure 6, 7 and 8 show draping results of fabric composite for a number of geometries.
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Figure 6- (a) A triangulated hemisphere (b) Shear angle distribution of the draped composite (c) The hemisphere and 
draped composite together 

(a) 

(b) 

(c) 
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Figure 7- (a) A triangulated bicycle saddle (b) Shear angle distribution of the draped composite (c) The saddle and 
draped composite together 

(a) 

(b) 

(c) 
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Figure 8- (a) A triangulated car spoiler (b) Shear angle distribution of the draped composite (c) The spoiler and 
draped composite together 

 

(a) 

(b) 

(c) 
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3. FINDING FABRIC FLAT CONTOUR 
A byproduct of this draping algorithm is the flat contour of the composite fabric. As mentioned in 
the introduction, the fabric in this methodology is considered as a group of square (or rectangular) 
cells. Thus, once the draping of the fabric is done, it can be easily mapped to a 2D plane (e.g. 𝑋𝑌 
plane) to obtain the flattened surface. The boundary of this flat specifies the cut line of this 
component from the composite fabric sheet. 

To find the flat contour, after the draping phase, for all the nodes on the surface boundary, the 
closest node of the draped fabric is found (e.g. Figure 9). Suppose 𝑖 and 𝑗 are the warp-weft indices 
of this fabric node. In this context, the indices of 𝑃!, the initial seed point, is (0,0) and it is mapped 
to (0,0) location in the 𝑋𝑌 plane. Also, from this boundary node 𝐵, to vectors parallel to the local 
warp and weft directions, which form a non-orthogonal basis, could be drawn. Let 𝑙0 and 𝑙5 be the 
lengths of these vectors, respectively. Then, the location of boundary node 𝐵 on the 𝑋𝑌 plane is 

 
𝑥 = 𝐿"#$% × 𝑖 ± O𝑙0O 

𝑦 = 𝐿"&'( × 𝑗 ± O𝑙5O 
(3)  

Figure 10 and 11 depict the flat contour of some draped composite fabrics. 

 

 

Figure 9- Surface flattening strategy 

 

 

(𝑖, 𝑗) 

a boundary node  

𝑙1  𝑙2  
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Figure 10- Left: Bicycle saddle draping, Right: Flat contour 

 

 

Figure 11- Hemisphere draping, Right: Flat contour
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4. APPLYING THESE RESULTS TO THE FORMING PROCESS 
Composite forming is a direct extension of the draping process. An FEA method is necessary to 
simulate this manufacturing process, but it can be seeded with the results from the draping 
algorithm. By using the presented method, we can reduce the amount of time an FEA calculation 
takes while maintaining enough accuracy for analyzing the wrinkles and deformations. Figure 12 
shows an automotive B-Pillar that was used to test this extension of the draping process. Forming 
composite components allows for a fast production cycle time, which creates more interest in the 
automotive industry to manufacture composite parts. The FEA method used simulates a single 
layer solution with varying material characteristics. A uniform force is distributed across the 
surface as the mold and die are pressed together. The results are displayed for 3 different materials 
in Figure 13. This can be extended even further for a stack of material or lamina if a multilayered 
physical model is applied.  

 

Figure 12- Automotive B-Pillar Example 
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Figure 13- Initial results for Single Layer Forming of different material properties 

 

 

5. CONCLUSIONS 
As we’ve seen, a hybrid approach used to solve for material draping over a surface can provide 
multiple benefits. The speed of the calculation provides users the ability to analyze multiple 
material draping scenarios to quickly iterate on the design for manufacturing process. The hybrid 
approach also provides results that are accurate enough to make these considerations at the design 
stage. The flat patterns generated from the draping simulation can be then used to influence an 
FEA-based forming simulation to again speed up the process and provide more manufacturing 
information at the design stage. By providing this up front, manufacturers can decrease the amount 
of manufacturing iterations and design changes that occur after the design process. Manufacturing 
parts with the forming process lends itself to higher amounts of automation and decreased part 
cycle times, allowing industries, like the automotive industry, to start taking advantage of 
composite materials in traditional products. By combining this automation on the shop floor with 
quick software simulation, manufacturers can now start to produce composite components and 
leverage design changes in new models year over year.  
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