AUTODESK SUMMIT

Analysis of the Cooling Efficiency of Different Cooling Technologies for Slender Injection Mold Cores

A. Gruber, M. Ambasana, G. Riddell, A. Rammohan, J. Payne, J. Meng, D. Kazmer, S. Johnston, D. Masato

Department of Plastics Engineering, University of Massachusetts Lowell

CORNING

March 21, 2025

AGENDA

- Background
- Objective
- Cooling Technologies
 - Ideal cooling and reference performance
 - Current design
 - Multi-material solutions
 - Conformal cooling
- Conclusions

COOLING TIME

- Injection molding cycle times are primarily dictated by the cooling time of the molded parts.
 - Ensure an adequate amount of time is allocated for the part to achieve sufficient rigidity to be ejected.
- Cooling time depends on plastic and mold materials thermal properties, wall thickness, cooling system design and temperature gradient.
 - The cooling efficiency for a certain application is dictated by the interaction between all parameters.

Figure. https://zetarmold.com/key-factors-injection-molding-process/

COOLING TIME

- **Enhance productivity by reducing cooling times:**
 - At the design stage:

- Plastic part design.
- Cooling system design: bubblers, baffles, thermal pins, conformal cooling.
- Mold material selection.
- <u>At the processing stage:</u>

CORNING

- Process parameters optimization.
- Cooling system layout.
- Rapid heat and cool injection molding.
- A tradeoff exists between the cooling efficiency, material properties, and process conditions.

Conformal Cooling

AGENDA

- Background
- Objective
- Cooling Technologies
 - Ideal cooling and reference performance
 - Current design
 - Multi-material solutions
 - Conformal cooling
- Proposed Implementation
- Conclusions

OBJECTIVE

• Study the Cooling Efficiency of slender mold cores using simulation modeling. This efficiency will be obtained as the ratio between the minimum achievable cooling time (t_{ideal}) and the current cooling time (t_{current}).

$$R[\%] = \frac{t_{ideal}}{t_{current}} * 100$$

Outlook: This approach could serve as a workflow for identifying the most promising strategies.

6

PART SELECTION

- A Two-Cavity Cable Adapter (i.e., Corning Optical Communications) was selected because of the interesting part and mold features.
- Two plates mold
 - 2 Cavities,
 - Drilled cooling lines in the slide blocks in the cavity side and under the part,
 - *No cooling in the cores.

FULL 3D MODELING

- The 2-Cavity mold was modeled as a full 3D study
 - Cooling lines (3D Channels)
 - Mold Block (3D Mold, Designed in SW with the negative of all the features)
 - Mold components (3D mold inserts)
 - Parts (3D part)

CORNING

• Full 3D model required more computational resources that were obtained through the UML virtual computing system.

Modeling of air gaps in the mold

2-CAVITY CABLE ADAPTER MODELING APPROACH

2-Cavity geometry

CORNING

3D - Simplified mold block

Mold components

Cooling lines

March 21, 2025

MATERIAL SELECTION AND MESH APPROACH

Components	Materials	Modeling approach	Mesh element types	Number of elements
2-Cavity Cable Adapter (Including runner system)	Ultem 2210 (PEI + 20% gf)	3D – as received from Corning		557,242
Simplified mold block	Tool Steel S7	3D Mold designed in SW with the negative of all the important features	Tetrahedral	8 433 485
Slide Block	Uddeholm Tyrax Steel			0,100,100
A side Core pins	Tool steel H13	3D – as received from		
B side Core pins,	Tool Steel S7	Corning		
Cooling lines	N/A			905,779

******The materials may be subject to change based on the specified approach

APPROACH TO TECHNOLOGY SELECTION

• Using simulation to calculate **cooling efficiency** (\mathbf{R}) as the ratio between the minimum achievable cooling time (t_{ideal}) and the current cooling time ($t_{current}$).

MODELING APPROACH

- The efficiency ratio will be determined by measuring the <u>time</u> to reach the ejection temperature (Suggested by Moldflow), at the hottest spot location in the part
 - In the thickest section of the part (1)
 - In the center of the sprue (2)

CORNING

$$R [\%] = \frac{t_{ideal}}{t_{current}} * 100$$

• Mold and part temperature uniformity, shrinkage and warpage are not considered in the cooling efficiency calculations.

COOLING TECHNOLOGIES

Different cooling technologies were modeled and compared considering cooling efficiency and temperature parameters.

Case #	Cooling Technology	Analysis type	Note	
1	N/A	Fill + Pack	Assuming a constant mold temperature (Ideal heat transfer)	
2	Drilled lines		Current cooling design	
3			Highly conductive material for the entire core pins	
4	Multi-material solutions	Cool (FEM)	Highly conductive core with a mechanically resistant shell	
5			Thermal pins	
6	Conformal cooling		Water lines closer to high thermal gradient regions	

ANALYSIS PARAMETERS APPROACH

March 21, 2025

- The same process parameters were used for all simulations, aligning with the information provided in the Cable Adapter datasheet.
- *A Reynolds number of 10,000 was assumed to guarantee turbulent flow.
- *The ejection temperature was assumed to be the suggested by Moldflow, and the driver of the cooling time.

Molding Parameters			
Coolant	Water		
Ejection temperature [°C]	200*		
Reynolds Number	10,000*		

AGENDA

- Project Overview & Executive Summary
- Introduction & Approach
- Cooling Technologies
 - Ideal cooling and reference performance

March 21, 2025

- Current design
- Multi-material solutions
- Conformal cooling
- Conclusions

CASE 1. IDEAL COOLING

March 21, 2025

- Modeling: 2-Cavity Cable Adapter, and runner system were only modeled.
 - Type of analysis: Fill + Pack
- Assumptions:
 - Constant mold temperature during cycle
 - Ideal heat transfer from the polymer to the mold
- This analysis served to:
 - Trace the ideal cooling time that can be achieved based on the assumption of a constant mold temperature
- The minimum time to reach the ejection temperature is 21.7 s (perfect cooling → reference)

CASE 2. CURRENT DESIGN

- Modeling: 2-Cavity Cable Adapter, runner system, 8 cooling lines, mold block, and mold components.
 - Type of analysis : Cool (FEM)
- Assumptions:
 - Surface roughness was not considered
 - Considers the influence of the different mold components materials and the cooling lines design
- The current time to reach the ejection temperature is <u>34.9 seconds.</u>

17

CASE 1 & 2. TEMPERATURE OF THE MOLD (TRANSIENT WITHIN CYCLE)

CORNING

Localization of the hottest part of the mold during cycle

March 21, 2025

UMASS

Learning with Purpose

CASE 1 & 2. PART TEMPERATURE AT 25 S COMPARISON

• Using the time to reach ejection temperature result, the cooling efficiency ratio was calculated:

$$R [\%] = \frac{t_{ideal}}{t_{current}} * 100$$

Recommended ejection temperature 200 °C

Approach	1. Ideal	2.Current design	
Time (s)	21.7	34.9	
Cooling Efficiency (%)	-	62.2	ASS

CASE 3. HIGH THERMAL CONDUCTIVE CORE PINS

- Modeling: 2-Cavity Cable Adapter, runner system, 8 cooling lines, mold block, and mold components
 - Core pins: Moldmax HH 40HRC
 - *The rest of the mold features remain unchanged
 - Type of analysis: Cool FEM
- Assumptions:
 - Surface roughness was not considered
 - Default interface conductance of 30,000 W/m².C

20

CASE 3. HIGHER THERMAL CONDUCTIVE CORE PINS

• The impact of using high thermal conductive materials was evaluated by replacing core pins with **Moldmax HH 40HRC** to enhance heat transfer from the part to the mold, with the expectation of reducing cooling time.

Recommended ejection temperature 200 °C

CORE DEFLECTION

Side gating, mold material and variations in melt pressure around the core's periphery, is a common issue in slender cores (length 10x diameter)

CORE SHIFT - MATERIAL COMPARISON

Assuming **bonded contact at the cores interlock** ,the core shift analysis was used to compare the mechanical stability of the cores loaded by the pressure flow when made with different materials.

CORNING

Deflection at 2 s, scale factor of 50

BONDED CONTACT – MATERIAL COMPARISON

• The Moldmax core pins, being the softer material, exhibited the highest core deflection, leading to the greatest variation in part thickness

UMASS

CASE 4. MULTI-MATERIAL CORE PIN

- Modeling: 2-Cavity Cable Adapter, runner system, 8 cooling • lines, mold block, and mold components
 - Use a conductive material for the core with a 1mm mechanically resistant outer shell
 - Type of analysis : Cool FEM
- Assumptions: •
 - Surface roughness was not considered ____
 - Perfect contact between core and layer
 - Default interface conductance of 30,000 W/m².C

Geometry	Material	Thermal Conductivity W/m.C	Tensile Modulus (GPa)	Hardness (HRC)
A & B side core pins	Moldmax HH 40HRC	115	128	38-42
Outer layer	H13	24.3	210	46-50
CODNI	INTO	•	March 21 2025	

March 21, 2025

CASE 4. MULTI-MATERIAL CORE PINS

Temperature of the part at 25 s comparison

CORE SHIFT ANALYSIS COMPARISON

When a hard steel layer is added to the core pin, it enhances the material's resistance to deflection while also exhibiting good conductive properties

CASE 5. THERMAL PIN

- Modeling: 2-Cavity Cable Adapter, runner system, 8 cooling lines, 4 thermal pins, mold block, and mold components
 - The thermal pins were not modeled in contact with the cooling lines, the intention behind this study was to assess the direction of heat flow.
 - Type of analysis: Cool (FEM)
- Assumptions:
 - Surface roughness was not considered
 - A perfect contact was assumed to be between the pin and the cores
 - The time to reach ejection temperature is not expected to decrease
 - Mold temperature should show a difference in its temperature

thermal pins

Learning with Purpose

CASE 5. THERMAL PINS

Mold insert temperature at 13 s comparison

- Thermal pins do not have a significant influence in driving the heat away from the part.
- It was expected to see an increase in temperature in the upper direction of the thermal pin

PART TEMPERATURE (TRANSIENT) - 25 S

Learning with Purpose

UMASS

CASE 6. CONFORMAL COOLING

- Modeling: Modeling: 2-Cavity Cable Adapter, runner system, 8 cooling lines, mold block, and mold components
 - Utilizing the existing cooling lines, a new cooling channel was created to surround the core pins
 - Type of analysis : Cool (FEM)

Straight cooling – Cable Adapter

CASE 6. CONFORMAL COOLING

• Based on the mold temperature results, it appears that cooling the core pins at that specific height is not significantly contributing to heat dissipation from the part

CASE 6. CONFORMAL COOLING COMPARISON

	Approach	2. Current design	3. Moldmax pins	4. Multi-material pins	6. Conformal Cooling
	Ej. Time [s]	34.9	26.9	28.8	34.6
	Eff. [%]	62.2	80.7	75.3	62.7
CORN	ING		March 21, 2	2025	Learning wi

EJECTION TIME RESULTS SUMMARY

High conductive core pins showed the most promising alternative to reduce cycle time, due to core shift results, the Multi-material approach was the chosen alternative

MOLD TEMPERATURE RESULTS

The mold temperature evaluation shows a more uniform temperature distribution across the mold with the multi-material technology.

tion shows a more ution across the ial technology.	[147.6[C]] [174.8[C] [185.9[C]] [153.2[C]	141.7[C] [149.5[C] [152.1[C] [142.7[C]
Approach	2. Current design	4. Multi-material pins
Ej. Time [s]	34.9	28.8
Eff. [%]	62.2	75.3
Mold Temp. Std. Dev. [°C]	18	5

AGENDA

- Project Overview & Executive Summary
- Introduction & Approach
- Cooling Technologies
 - Ideal cooling and reference performance
 - Current design
 - Multi-material solutions
 - Conformal cooling
- Conclusions

CONCLUSIONS

38

AUTODESK SUMMIT

Analysis of the Cooling Efficiency of Different Cooling Technologies for Slender Injection Mold Cores

A. Gruber, M. Ambasana, G. Riddell, A. Rammohan, J. Payne, J. Meng, D. Kazmer, S. Johnston, D. Masato

Department of Plastics Engineering, University of Massachusetts Lowell

CORNING

March 21, 2025