

Reliable Design of Reinforced Plastics

Dustin Souza

Business Enablement Lead Digital Materials *dustin.souza*@hexagon.com

Agenda

Conclusion Perspectives & next steps

Pain points & objectives

Pain points – Material

4 | hexagon.com

Pain points – Material

Pain points – Overall

Reality

- Unpredictable
- Multiple sources of uncertainty
- Cannot always be accounted for

uncertainty

neglected

Under-design Over-design

Probabilistic based design

Sources of uncertainties

Physical Uncertainty

- Issues from material processing & testing
- Unexpected defects in part

Numerical Uncertainty

- Averaging errors in structural analysis results
- Inaccurate process simulation results

Objectives

Reliable Design of Reinforced Plastics

Uncertainty Quantification

Variability

Objectives

Methodology & solution

Methodology – Five main steps

Methodology

User inputs

Methodology

User inputs

Range of uncertainty

Uniform distribution

Number of simulations

Key Performance Indicators (KPIs) Streamline post-processing

Methodology

User inputs

Number of simulations used for ROM training Recommendation: $80\% \rightarrow Train$ $20\% \rightarrow Test$

Performance Assessment

Based on KPIs identified

 $\begin{array}{c} & \mathbf{R}^2 \text{ value} \\ \text{Closer to 1} \rightarrow \text{Higher accuracy} \end{array}$

ROM vs. Simulation Closer to diagonal -> Higher accuracy

Ground truth

Methodology

Design limit Criteria used to determine if design is robust or not

Example: Part failure

Failure limit determined by:

- Criteria at each integration point
- Evolution of force/displacement curve (Not yet available)

Artificial Intelligence method

Train model to learn to determine if part breaks

Methodology

Uncertainty

Scatter expected on input of interest

Example 1

Specimen

Design of Experiments (DoE) validation

Two sources of uncertainty:

- 1. Injection simulation results; i.e., orientation tensor 2 parameters
- 2. Failure limits of material 3 parameters

Validation of Reduced Order Model (ROM)

ROM vs. Simulation

High-Fidelity DoE
10 runsTrain
8 runsTest
2 runs

Failure indicator at each integration point compared

R² value Between 98.6-99.3% accuracy

What-if analysis

*	
*** *** * ** ** ****	
·	
********* ** *** * *****	* ****** **** ** * * **** *

Predict & display full field of failure indicator using trained ROM

- Real time testing of different configurations
- · Assess how model responds to various sources of uncertainty

UQ/Reliability analysis

Probability of failure: $P_f = \frac{n}{N}$ Reliability: $1 - P_f$ No failure Failure

HEXAGON

100 calls to trained Reduced Order Model (ROM)

- Failure
- P_f

•

Reliability

: 6% : 94%

First component of orientation tensor First component of orientation tensor

: 6/100

- Greatest impact on design reliability
- Failed runs show clear trend as function of OT1

Example 2

EV battery enclosure

Design of Experiments (DoE) validation

Two sources of uncertainty:

- 1. Injection simulation results; i.e., orientation tensor 2 parameters
- 2. Failure limits of material 3 parameters

Validation of Reduced Order Model (ROM)

ROM vs. Simulation

High-Fidelity DoE
10 runsTrain
8 runsTest
2 runs

Failure indicator at each integration point compared

R² value Between 97.9-98.9% accuracy

What-if analysis

Predict & display full field of failure indicator using trained ROM

- Real time testing of different configurations
- · Assess how model responds to various sources of uncertainty

UQ/Reliability analysis

100 calls to trained Reduced Order Model (ROM)

Failure

P

- : 8/100 · 8%
- Reliability
- : 8% : 92%

In-plane tensile strength .

- Greatest impact on design reliability
- Failed runs show clear trend as function of inplane_tensile_strength

Probability of failure: $P_f = \frac{n}{N}$ Reliability: $1 - P_f$ • No failure • Failure

UQ based design for reinforced plastics

Hexagon's products and services provide excellent support to our daily business with innovative simulation methods for holistic virtual engineering of plastic components. It's great to collaborate with such a professional and knowledgeable team. Jan-Martin Kaiser

Challenge

 \bigcirc

- Numerous sources of uncertainty present in reality
- Simulation ignores uncertainty
- Uncertainty must be accounted for to obtain robust designs

Solution

- Simplified workflow, available through Digimat, that performs multiscale material modeling from manufacturing process to structural analysis
- Integration of Artificial Intelligence (AI) & Uncertainty Quantification (UQ) to account for material property uncertainties also available

Benefits

- Embedding of material science, AI & UQ, into automated workflow allows for efficient and accurate design qualification
- Reliability of studied structural analysis can be evaluated
- Enhancement of product quality

Perspectives & next steps

Perspectives

Uncertainty

- Present in physical world
- Conventional simulation ignores uncertainty
- Uncertainty Quantification (UQ) necessary to prevent over/under-design

Digimat & ODYSSEE

• Users can perform UQ based design studies

Any input within material card or processing can be considered source of uncertainty
Seamless integration of both solutions into existing workflow

Results

- Assess probability of failure based on 100s of tests through trained ROM
- Determine reliability of designed structural part
- Understand which parameters influence desired performance most greatly

Next steps

New proje	ect				
Workflow	Multiscale	Simulatio	on	Ŧ	
○ Single	simulation	Ounce	rtair	nty	Quantification
Source of	f variability				

Implementation

Digimat 2025.1 includes seamless, user-friendly interface for UQ analyses
Ability to select material or manufacturing process as source of variability
Option to select AI/ML to accelerate studies

Create new project

Number of variants	30			
Number of variables	4			
Variable		Baseline	Variability (%)	Lower bound
Melt temperature		265	5	252
Mold temperature		70	5	66.68
Filling time		0.4149	5	0.395
Gate diameter		1	5	0.951

Assessment

- New and expanding plot library, like parallel coordinates, for reliability assessment
- Any predicted manufacturing process variability can be assessed:
 - Melt/mold temperature, filling time, pressure etc.

Expansion

- Gather customer feedback on existing capabilities & future needs
- Improve existing workflows to be more seamless & user-friendly
- Gating position optimization based on structural KPIs

Next steps

Thank You! Questions?

Dustin Souza

Business Enablement Lead Digital Materials *dustin.souza*@hexagon.com

