

Beaumont: Material Characterization Lab Update

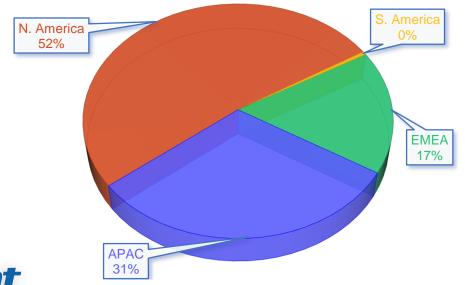
Jacob Trott Director, Material Characterization Division | Beaumont Advanced Processing

© 2025 Autodesk. All rights reserved.

- With Beaumont Since 2014
 - Research and Development
 - Production Molding
 - Moldflow Material Characterization

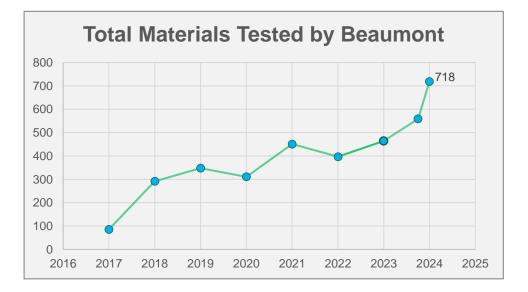
Presentation Overview

- 1 2024 Characterization Trends
- 2 AMPL Lab Transition to BAP
- 3 Standard Changes in .udb Files
- 4 Thermal Conductivity and Orientation
- 5 Case Study



2024 Characterization Trends

Geographical Breakdown

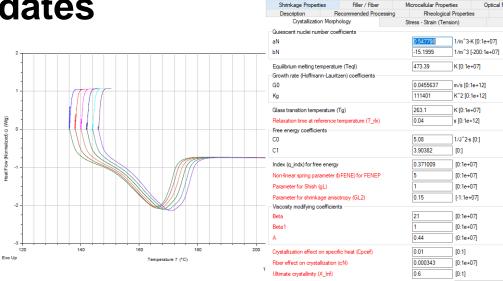

MATERIALS CHARACTERIZED BY REGION; 2024

Characterization Totals and Market Trends

- Characterized 3000+ Materials
 - Majority of these included or expected to be included in the Public Database

AMPL Lab Transition to BAP

Equipment Transition



Equipment/Package Updates

- Now Supported
 - MPL-420 Crystallization
- Upcoming
 - MPL-410 Viscoelasticity for Birefringence
 - Duplicate equipment
 - Electrical infrastructure complete
 - Equipment operational
 - Equipment calibrated and validated
 - Increased capacity reduced lead times

Edit test inform

Standard Changes in .udb Files

STAMP

 Will become default 3D shrinkage model when data is available Thermoplastics material

Crystallization Morphology			Stress - Strain (Tension)		Stress - Strain (Compression)			Powder Properties	
Description	Description Recommended Processing		Rheological Properties		Thermal Properties pvT Pro		pvT Properties	Mecha	nical Properties
Shrinkage Properties	Filler / Fiber	Microce	Ilular Properties	0	ptical Properties	Envi	ronmental Impact	Material dat	a completeness
Select a shrinkage model (Midplane and Dual Domain)									
Corrected residual in-mold stress (CRIMS)			Examine CRIMS	Examine CRIMS model		Default Flow/Fiber set		Edit model coefficients	
Select a shrinkage model (3D)									
Shrinkage test adjusted mechanical properties (STAMP)									
Observed nominal shrinkage									
Parallel	1.546	% [-100:100]							

 No additional data required if shrinkage testing was completed

Environmental Impact Tab

Autodesk Moldflow Sustainability Descriptors (Optional):

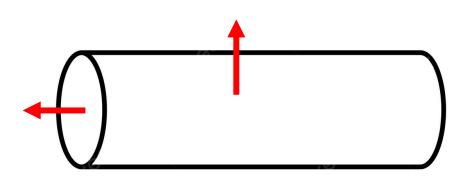
The completion of this section is <u>optional</u> for customers ordering Autodesk Moldflow Material Characterization. If chosen to report this information, the data will be available with 2025 release of Autodesk Moldflow products.

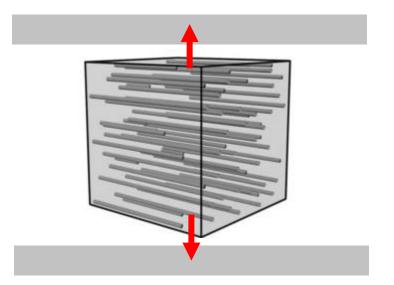
Sustainability Field	Available Values	Assigned Value
Minimum Potential Biomass	0-100%	
Sourced Feedstock	0-100%	
Maximum Potential Biomass	0-100%	
Sourced Feedstock	0-100%	
Biodegradable?	Yes / No	
Minimum Recycled Content	0-100%	
Maximum Recycled Content	0-100%	
Recycling Method	Unknown / Mechanical / Chemical / Other	
Recycled Source	PCR / PIR / Other	
Comments on Environmental		
Impact		

Thermal Conductivity and Orientation

Filler Properties

- Why filler properties are important
- Removed mineral option as it is very generic and often hides the aspect ratio we should be capturing




Thermoplastics material

Crystallization Morphology				Stress - Strain (Tension) Rheological Properties		Stress	Stress - Strain (Compression)			Powder Properties	
Description Recommended Processing		ssing	s Thermal P			Thermal Properties pvT Properties					
- 5	Shrinkage Properties Filler / Fiber			Microcellular Properties		Optical Properties		Environmental Impact	Material data c	ompleteness	
Fibe	r orientation c	alculation	(Midplane and Dual D)omain) t	у						
Mo	ldflow model v	vith auto-c	alculated Ci and Dz v	alues		\sim					
Fibe	er orientation c	alculation	(3D) by								
Moldflow Rotational Diffusion model View settings											
Fille	r data										
	Description	Weight %									
1	Mineral	41									
											Details <<
Der	nsity (rho)					g/cm^3					
Spe	cific heat (Cp)					J/kg-C					
Thermal conductivity (k)						W/m-C					
	chanical prope					_					
Ela	stic modulus, 1	st principa	al direction (E1)			MPa					
Ela	stic modulus, 2	nd princip?	al direction(E2)			MPa					
Poi	ssons ratio (v1	2)									
Poi	ssons ratio (v2	3)									
Shear modulus (G12)					MP	a					
Сое	fficient of then	mal expan	sion (CTE) data								
Alp	na1					1/C					
Alp	na2					1/C					
Ter	sile strength d	ata									
Parallel to major axis of fiber/filler						MPa					
Perpendicular to major axis of fiber/filler						MPa					
Asp	ect ratio (L/D)				1						
	r length inform	ation									
Initial Length						mm					
Measurement method				Not specified					\sim		
Year measured											

Isotropic vs. Anisotropic Fillers

- Carbon Fiber
 - Thermal Conductivity can be 10x lower through plane vs. axially along the fiber

Transient Plane Source Method

K CONDUCTIVITY TEST Hot Disk Thermal Constants Analyzer: A measure of a material's ability to conduct heat. CELL PLUG Maintain a constant load on sample stack-up How a test works During a measurement, a current passes **KAPTON SHEET** through the sensor spiral and creates an This layer contains the plastic sample within the cell increase in temperature, which is recorded over time. Heat generated, dissipates into the O-RING SAMPLE sample at a rate dependent on the thermal Contains plastic sample transport characteristics of the material. Material being tested **KAPTON SHEET** The results Protective layer to separate molten **TPS SENSOR** plastic from the TPS Sensor Delivers current to the Thermal Conductivity vs Temperature sample and measures temperature Temperature (F) Beaumont Advanced Processing

Anisotropic Thermal Conductivity

111.7

1815.6

1791.6

-ບ.ວວວ

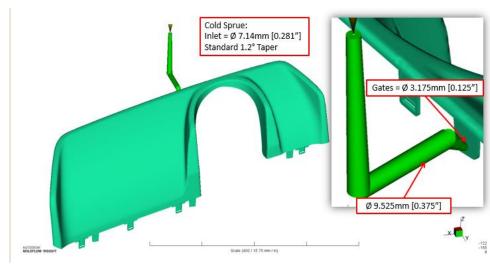
710 - 1-1-1

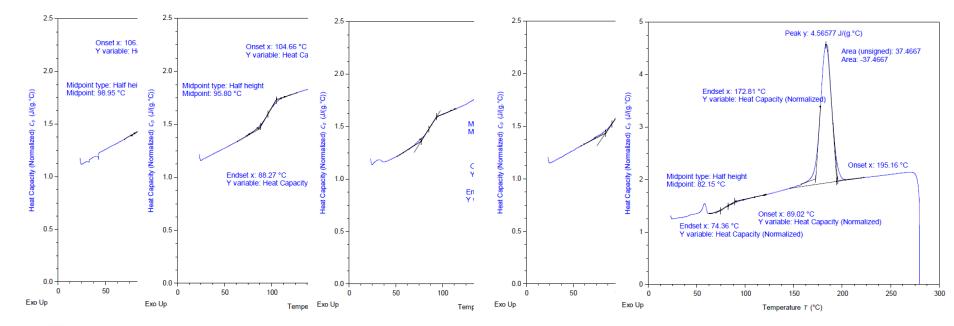
-0.333

-0.333

- 2024 Release offered the ability to incorporate anisotropic thermal conductivity when considering fiber orientation in 3D analysis
- Prior versions would have listed 'anisotropicthrough-thickness' thermal conductivity
- Now Bulk is recorded in the file to allow for decomposition of thermal conductivity

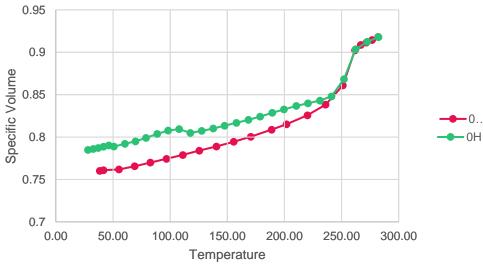
Axial: 1.5048 W/mk Bulk: 6.3524 W/mk Radial: 27.1101 W/mk

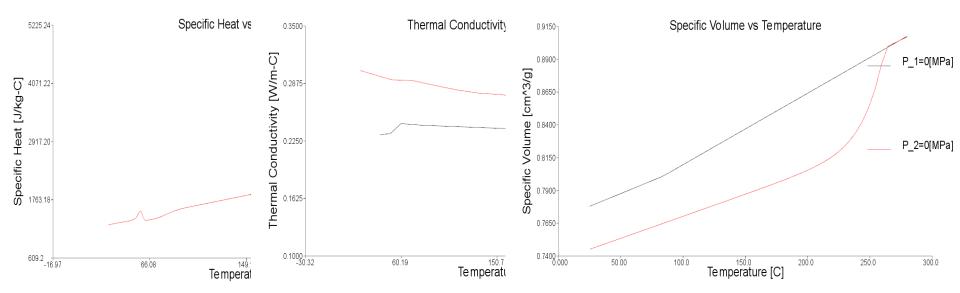

XX	1675.9	-0.333		
XXX	1634.6	Test Information (Ther	mal Conductivity Data) X	×
	Fil1580.2 1483.5 M106.5 Fil Ve information Pr	Source Date last modified Date tested Method Measurement type	Beaumont Advanced Processing 26-FEB-25 26-FEB-25 Transient Plane Heat Source (Hot Disc) (ISO 22007-2) Bulk value (default)	data
•••	^x / _i nductivity (k) He cdV/m-C (0:30) s 0.6241 □ 0.6212 □ 0.6282	Comments	OK Cancel Help	ions
	0.6286	0		Help
	0.6321 u348^*	0 U ^		


Case Study: Slow Crystallization: Fitting Strategies for Copolyesters

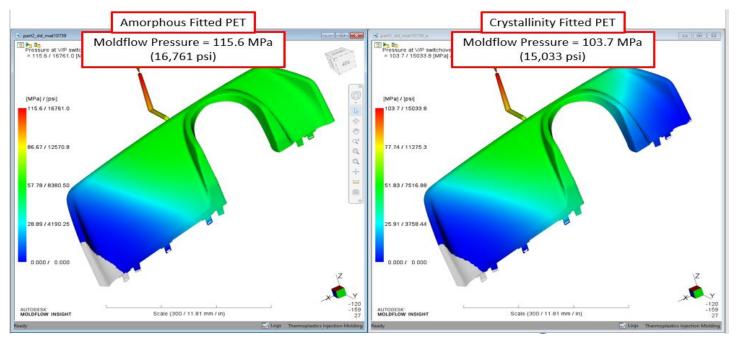
Copolyesters

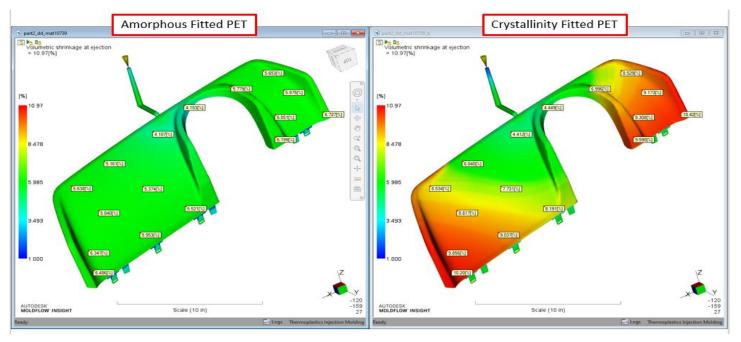
Typically Amorphous when molded

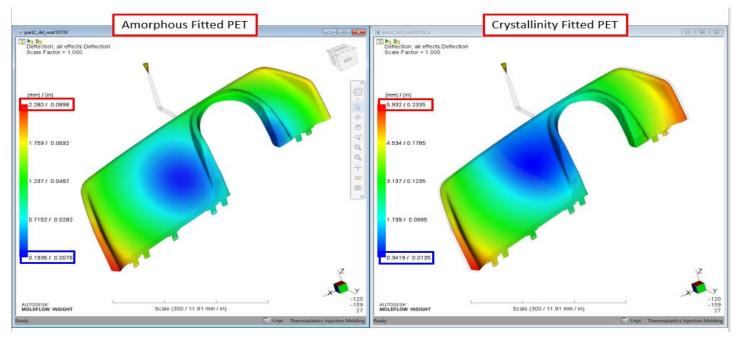




— Heating Curve


Heat vs. Cool PvT - Copolyester





Thank You

AUTODESK Make Anything

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2025 Autodesk. All rights reserved.