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3D Solver Speed-up in 2025

Speed-up achieved by coding efficiency -> No decrease in accuracy

:: u Flow solver
. Warp solver
* 3D Flow: 23% faster 3D Warp: 16% faster
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Speedup (compared to Moldflow 2024)
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Improve Flow Front Temperature: 3D

* Improved thermal boundary condition at flow front
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Improve Flow Front Temperature: 3D

* Improved thermal boundary condition at flow front
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Variable Speed Valve Gate Support for 3D Flow

e Allow gradual opening/closing of valve gates on beam elements in 3D analyses

o Same options as current supported for Midplane & Dual-Domain meshes
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Variable Speed Valve Gates in 3D Flow: Validation

Valve Gate 3 opens slowly =i By e
= 6.186[s] = 6.238[s]
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Molding Case-study courtesy of Synventive® Molding Solutions



3D Injection compression molding

3D injection compression can now include a mold
opening stroke during polymer injection phase.
- Specify the Speed vs Distance Increment

New Press position screen output and result

12.50 Press position_1:XY Plot

Filling Phase: Status: U = Uelocity control
============= U/P = Uelocity/pressure switch-over

P = Pressure control 000
e L L |
| Time | Fill vol| Inj Press | Clamp F | Flow Rate| Frozen | Filled || Press Pos || Status|
| (s) | (%) | (HPa) | (tonne) | (cm™3/s) | Yol (%)| Hode (%p] {nm) | |
I ____________________________________________________________________________________________ I 7.500
| ©.882 | ©8.839 | 7.120e-01 | 4_.49e-09 | 20.212 | ©8.80 | 0.000/]| 1.015e+80 || U | £
| ©.883 | 8.871 | 1.855e+08 | 7.45e-89 | 11.244 | @6.88 | @.902|| 1.822e+00 || U | £
| 9.889 | B.183 | 3.120e+08 | 3.88e-08 | 3.684 | 8.88 | 0.085|| 1.867e+80 || U |
| 98.823 | 9.225 | 7.879e+080 | 1.41e-87 | 6.918 | 90.880 | 0.007|] 1.168e+00 || U | oo
|  8.881 | B.452 | 1.236e+01 | 4.34e-907 | 9.857 | ©.88 | o.oi4)| 1.286e+00 || U |
| ©.859 | B.736 | 1.738e+81 | 8.38e-87 | 12.613 | 8.80 | @.018|| 1.416e+008 || v |
|  ©8.881 | 1.127 | 2.263e+01 | 1.45e-86 | 16.457 | 8.80 | 0.825|| 1.568e+080 || v | oo
| ®.184 | 1.558 | 2.772e+01 | 6.64e-83 | 19.939 | @6.88 | @.934|| 1.730e+00 || U |
| 8.122 | 1.982 | 3.159e+81 | 5.19e-82 | 21.718 | 8.80 | @.e41|| 1.852e+08 || v |
|  98.137 | 2.247 | 3.507e+01 | 1.31e-81 | 22.287 | 8.80 | @6.048|| 1.968e+00 || U |

0.000 1.060 2.000 3000 4000

Time[s]



Cooling Circuit Optimization

Optimize cooling channels:
* Minimize temperature differences
* Minimize average cavity temperature

Move away from cooler regions

Move toward hot regions



Cooling Circuit Optimization
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Cooling Circuit Optimization Results

——o—Combined#—Tavg —&—Tstd_dev

0.8

Combined | Tavg Trange
Metrlc °C °C °C
0.6 53.1 26.0 1.0
0.4

' 0.58 39.7 39 18.6 0.75 0.41
0.2

0 5 10 15 20 25

e 42% improvement with the optimized cooling channel layout Combined Metric
e Reduction in cycle time
e 13.4° C reduction in average mold-part surface contact temperature, T,

e Reduction in temperature variance
e 59% improvement in the standard deviation of the temperature variances, std,,



Cooling Circuit Optimization
Part Warpage [mm] .

I0.6024 // \ f %\

Optimized layout has less
temperature induced warpage
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Additional Insights for Over-Constrained Warp

Useful when modeling assembly onto arigid structure

Deflection, all effects:Deflection Deflection, all effects (unconstrained):Deflection Deflection, constraint effect:Deflection
Scale Factor = 10.00 . . Scale Factor = 10.00 Scale Factor = 10.00
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(Isolate Causes of Warpage)

* No longer include constraint effects in other causes of warp
« Works also with automatic adjustment of constraint according to mold shrinkage allowance



Barrel Compression

e Midplane / Dual-Domain with large Hot Runnners

o Better ramp-up of flow rate existing barrel
* Accounting for compressibility of polymer in the hot runner system

+ Better match to 3D and reality

U/P= Uelocity/pressure switch-over U/P= Uelocity/pressure suitch-over
————————————————————————————————————————————————————————————— |
I Time | Uolume| Pressure | Clamp force|Flow rate|Status | | Time | Uolume| Pressure | Clamp force|Flow rate|Status |
1 sy | (%) | (HPa) | (tonne) [{cm"3/s) | | Before fix I sy | (%) | (HPa) | (tonne)  |{cm 3/5) | I
| | | | ©8.15%9 | ©.88 | |
| | | | ©.384% | 9.4 | |
] | | | ©®.u56 | 1.26 | |
| . | . 1 " | 8.588 | 1.61 | )
| ©0.500 | 8.62 |"UGE2" # 2 (Elemt 57567) opened.| | 0.500 | 1.61 |"UGO2" # 2 (Elem# 57567) opened.|
| 8.687 | 11.33 | 79.64 | 2667 | 493.12 | u | | ©.688 | 3.99 | 72.38 | 10.60 | L42.34 | u |
| 8.767 | 14.25 | T2.57 | 31.26 | wW9.72 | u | | ©8.768 | 6.65 | 69.40 | 14.64 | 486.49 | u |
| 8.911 | 16.71 | 71.58 | 37.69 | 398.58 | U | | 8.911 | 9.89 | 69.39 | 19.14 | 395.85 | U |
| 1.865 | 19.13 | 72.40 | 45.91 | 392.25 | U | | 1.864 | 11.53 | 76.25 | 24.66 | 393.39 | U |
| 1.217 | 21.49 | 73.74 | 55.08 | 391.63 | U | | 1.215 | 13.91 | 71.27 | 31.01 | 393.37 | U |



Other 2025 Solver Enhancements

Pressure at injection location: XY Plot

e Automatic Packing Profile is now Default 4 80% of Filling Pressure
1250 f A A A A A
o No longer 80% of filling pressure I
g |
E 7500—‘
EUUUA‘
e Improve DD Warp ]
o Fix problem in constraints linking top and bottom S S S
Time[s]
Su rface 25.00 Pressure at injection location: XY Plot
- Problems were noticed in symmetric models " ‘I Aut ic Packi
‘ utomatic Fackin
f. g
f - Pressure
g f/ |

[ |
| |
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Improve Warp Accuracy using shrinkage data

STAMP shrinkage model is now default for 3D analyses when data is available

e Use the measured shrinkage data to calibrate thermo-mechanical properties
o Coefficient of Thermal Expansion (CTE) (anisotropic)

o Young’s modulus

e For fiber-filled polymer, calibration is done on the polymer matrix properties

e Shrinkage Test Adjusted Mechanical Properties (STAMP)
o US patent application 17/959,221

e Use on analyses of 3D Part geometries
o Analyses of shell geometries use the CRIMS method of shrinkage calibrations



STAMP vs Residual Stress Model

171 Unfilled Polymers — Flow Direction

Residual Stress Model STAMP
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STAMP vs Residual Stress Model

171 Unfilled Polymers — Transverse Direction
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Calibrated Local Anisotropic Mechanical Properties

Using Fiber Orientation
Fiber Orientation

Fiber Length +  Calibrated Matrix Properties
Fiber Properties

Composite Properties
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STAMP vs Residual Stress Model

106 Fiber Filled Polymers — Flow Direction
Residual Stress Model
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STAMP vs Residual Stress Model

106 Fiber Filled Polymers — Transverse Direction

Residual Stress Model
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STAMP Improvement

Post-molding residual stress

* In AMI 2024 & 2025 the post-warp residual stress from STAMP was sometimes unrealistic
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STAMP Improvement

Post-molding residual stress

* In AMI 2024 & 2025 the post- warp reS|duaI stress from STAMP was sometimes unrealistic
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STAMP 2026 vs STAMP 2025

106 Unfilled Polymers
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STAMP 2026 vs STAMP 2025

171 Fiber Filled Polymers
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AMI 2026

STAMP IS now the
DEFAULT 3p shrinkage

model

For Shrinkage Characterized Polymers



3D Solvers Speed Improvements

No decrease in of accuracy or resolution

e 3D Flow: Improve SCM file transfer speed when number of intermediate results is high

o Cannot view results in previous Moldflow releases

e 3D Warp: Speed-up by removing disk operations (increases memory requirement)
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3D Flow: Up to 50% speed up 3D Warp: Up to 30% speed up



Meshing Speed Improvements

Without loss of accuracy or mesh resolution

e Faster Dual-Domain surface meshing (up to 30%)
e Speed & Quality mesh improvements for many 3D models
® Fix problem of a few models which required too long to mesh
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Mold Thermal Analysis for RTM (3D)

Add Cool(FEM) analysis for the Resin Transfer Molding process in 3D

e Allow different coolant (heating fluid) temperatures during various phases of the process:

* Pre-heating phase by time or thermocouple control
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Q Curing
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Coolart inlet temperature C [-120:500] lq_) P re- h eat
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Cancel Help % C O 0 I

g Down
&) Time




Mold Thermal Analysis for RTM (3D)

Add Cool(FEM) analysis for the Resin Transfer Molding process in 3D
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Other Solver Improvements

e Improved barrel compressibility calculation for Midplane and Dual-Domain solves when
using Absolute Ram Position/Speed Profiles AMI2026

3.899 | 93.64 | 65.086 | 966.17 | 455.92 | 35.64 | U | | 3.481 | 95.85 | 51.18 | 891.39 | 228.84 | 26.49 | U |
3.167 | 95.23 | 58.95 | 972.61 | 249.72 | 3420 | U | | 3.508 | 96.68 | 51.85 | 931.22 | 22814 | 2555 | U |
3.233 | 96.43 | 55.69 | 931.96 | 238.67 | 33.36 | U | | 3.573 | 97.31 | 52.66 | 978.61 | 227.86 | 2865 | U |
3.304 | 97.47 | 54.38 | 919.47 | 233.47 | 32.48 ]| U IAM|2025 | 3.638 | 98.082 | 53.57 | 1011.98 | 227.77 | 23.76 | U |
3.378 | 98.31 | 53.98 | 927.59 | 230.98 -2 u | 3.7688 | 98.77 | 54,63 | 105974 | 227.75 | 22,79 | y |
3.429 | 99.01 | 54.14 | 9u7.71 | 228.61 | i u/p | 3.731 | 99.00 | 5494 | 1076.61 | 224,32 22.48 u/P
3.436 | 99.088 | 58.78 | 949.83 | 46.16 -6 P | 3.7%1 | 99.11 | 49.88 | 1881.34 | -@.48 -

3.440 | 99.13 | Lo.08 | 011 | 17.88 | 38.69 | P | | 3.773 | 99.41 | 49.008 | 10868.84 | 189.84% | 22.47 | P |
3.503 | 99.71 | ho.o8 | 925.33 | 157.23 | 38.27 | P | | 3.840 | 99.84 | 49.008 | 16877.42 | 13994 | 21.94 | P |
3.578 |1600.080 | 49.88 | 1813.52 | 147.38 | 20.67 | P | | 3.888 | 99.99 | 49._88 | 1150.82 | 127.71 | 2157 | P |
3.571 |1600.00 | 49.80 | 1015.27 | 147.01 | 29.67 | P | | 3.808 |1608.080 | 49._88 | 115215 | 127.32 | 21.56 |Filled |
3.572 |100.00 | 49.08 | 161747 | 146.67 | 29.66 |Filled | e I

______________________________________________________________________ I

e Improved coefficient of thermal expansion calculation for fiber and disk filled polymers in
Midplane and Dual-Domain analyses

* Improved accuracy of part-weight during 3D Compression molding analyses

Improved Automatic Switchover from Velocity Control to Pressure Control for 3D Flow
analyses when large hot runner volumes are present
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Research Disclaimer

e We may make statements regarding planned or
future development efforts for our existing or new
products and services. These statements are not
intended to be a promise or guarantee of future
delivery of products, services or features but merely
reflect our current plans, which may
change. Purchasing decisions should not be made
based upon reliance on these statements.

e The Company assumes no obligation to update
these forward-looking statements to reflect events
that occur or circumstances that exist or change
after the date on which they were made.




Automatic Conformal Cooling Channels

« Channel layout follows part contours
« Phase 1: For Additive Manufactured channels / mold inserts
» Phase 2: Restrict to straight (drill & plug) channels

Temperature, mold Temperature, mold NBC14
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3D Meshing

Increased refinement and improve symmetry at gates connected to beams




Use of Recycled Content

e Expect variation in properties (especially for Post-Consumer Recycled materials)

o Density, Viscosity, Solidification Temperature & Thermal Expansion Coefficient
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0 16
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Prime PIR PCR
94 95 96 97 98 99 27 28 45
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Orzan et al., 2021
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Plate-plate rheometry: ISO 3219-2

Batch Variations in
Viscosity of PCR (PP)
Schatz, L.M. (2023)
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Minimizing sensitivity to Recycled Plastics

Thin-walled cover with Flow Leaders
PA with 30% glass fiber

Nominal Wall Thickness: 1.5mm
Flow leader thickness 1.7mm & 2.0mm

16

14

12

10

o]

()]

B No flow leader
[ Flow leader
[ Flow leaders, thicker

Deflection (mm) with material variation
for various flow leader designs



Minimizing sensitivity to Recycled Plastics

Process condition Nominal Alternative

Melt Temperature (°C) 260 220

Mold Temperature (°C) 80 65
Injection Time (sec) 1.54 0.86

e Using cover design with 20
1.7mm flow leader 18
16
e Try varying melt 14
temperature, mold 12 W Control 1.54s
temperature & Injection 10 W Melt Temp 220
Time 8 & B Mold Temp 65
6 = = ] Quick Fill 0.86s
e Same material variations ’
ranges for each case ;

Deflection (mm) with material variation
for various process conditions



Detailed study of process optimization

Average deflection magnitude (mm) Deflection variation (mm)

Conflicting optimization objectives: magnitude v.s. variation



Neural Network Surrogate Model

e Training data should be closely related to the
problem to be solved
NN structure
® |n this study: Same geometry, Same material,
Same level of material variation

Hidden Layers (N1,N2)

e Train Neural Network using a subset of the 9x9
response surface

o Remaining points are used for testing

—

Deflection_

e Use multi-layer perception model from Python variance

scikit-learn library (v1.5.0)

o 2 layers of neurons. Optimization process selected
N1 =470, N2 =255



Use Neural Network to decrease compute time

e Use a 3x3 Simulation grid of process conditions to train Neural Network model:

o Better response characteristic than a 2" order polymer fit to the same 3x3 grid

Simulation ML model Curve Fitting (2" order)
9x9 grid 3x3 grid as input 3x3 grid as input

Deflection
Magnitude

Deflection
Variance




Talc filler

e Common filler in material database (make up ~11% of all materials)
e Assumed to be spherical particles as they have no fixed aspect ratio like fibers
® Imaging shows size distribution which can impact fill/pack/warp

e Potential for using custom aspect ratio for better warp results

- —
—

,.__—,ZLSmeo.Gpm —

5.8umx0.7um

2.5umx0.5um

Copyright: Autodesk



Overmolding Improvements

* Improve 3D Warp with Part Inserts by
considering

o Thermal expansion of insert before contact

o Thermal contraction after contact

o Achieve consistent application of pre-contact time
which heats the insert

® Improve 2-component overmolding by
considering relaxation of first shot before
overmolding



Other Solver Improvements

® Cool analysis: Reduce computation time and
mold meshing time for large complex molds

* Flow analysis: Allow increased flexibility for

valve gate controls

e Warp analysis: Improve consistency for
ribbed parts (DD vs 3D)

- =
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Sprue Bushing A
Slider Locking Block - 4 Z
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e S Molded Part

Wear Plate

Ejector Pin
Slider !

Return Pin

Guide
Lifter

Core

Ejector Retainer Plate Guide Block
| I

Lifter Set

Ejector Plate

Wear Plate
Spacer Block
Rear Clamp Plate

Support Pillar

Image source: FirstMold.com



Summary

1 Moldflow 2025 Release

2 Moldflow 2026 Release

3 Current Research Work
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