Moldflow Research & Development

Dr. Jin Wang Sr. Research Engineer

2018 Autodesk, Ir

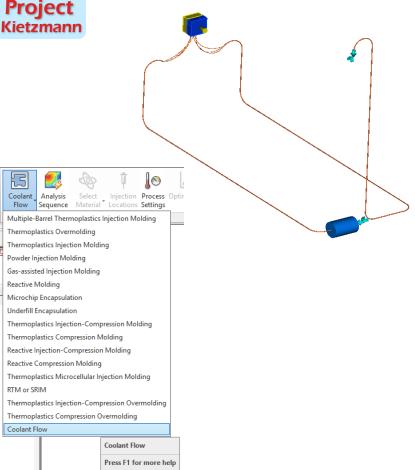
Research & Development

- In-house Research
 - 25 Ph.D. employees in Moldflow development
 - Lab with state-of-the-art equipment
- External Research Collaboration
 - Sponsorship for five Ph.D. students and six universities
 - Partnership with over 20 companies and institutions

R&D Passion Project

- Developers work on their very own projects or ideas they are passionate about
- Generally, 10% to 20 % of their time is devoted for this Project
- Developers do not have to tell anyone about the project until they are comfortable to talk about or have a prototype

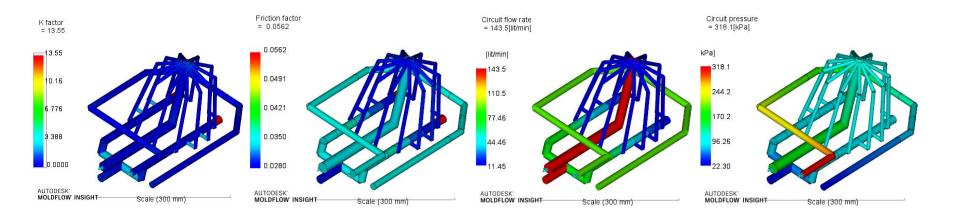
Contents


- Highlights of Moldflow Solver 2019
- Under Development
- Material Laboratory
- External Research Collaborations

Autodesk Moldflow 2019

Coolant Flow Analysis

Passion Project Dr. Clinton Kietzmann


- Optimize the flow balance in the cooling circuit design
 - Without running the full mold temperature solution
 - Check for turbulence avoid dead zones
 - Option to calculate coolant temperature change
 - Include gravity, pump performance, friction losses at bends and junctions
 - Familiar Moldflow environment easy to switch to full mold thermal analysis
 - 3rd party multi-physics simulation package is not necessary

Coolant Flow Analysis (cont'd)

- New Results
 - Friction Factor, depends on flow rate and temperature in straight channel
 - K-Factor, add minor pressure losses at changes in diameter, bends and junctions

Faster Conformal Coolant Flow 3D Solver

- Support Linux and Parallelization
- Voxel based coolant flow calculation
- Default is still FEM (CFD) solver
- Option to control grid resolution
 - Automatic is recommended

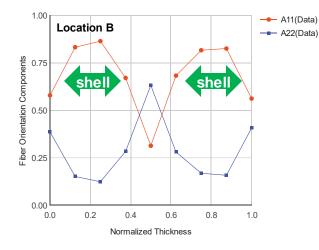
>⇒		⇒¢
Cross section	Moldflow 3D Channel mesh	Moldflow results
	Voxel mesh Voxel solver	Voxelresults

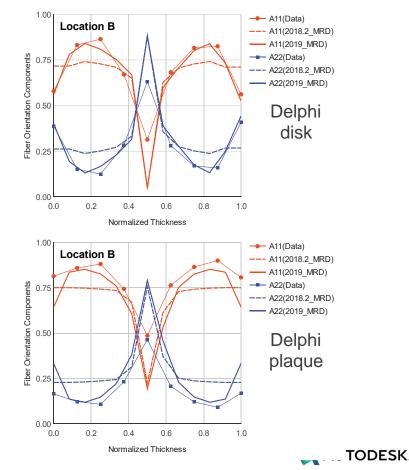
Process Settings Wizard -	Cool (FEM) Settings		×
	Melt temperature 220 Mold-open time 5 Mold-close time before injection 0 injection + packing + cooling time 1	C s (0.600] s [0.600]	
	Specified	 Injection + packing + cooling time 30 s [0:6000] 	
9	Mold temperature options		
6	Averaged within cycle	Cool (FEM) Solver Parameters	
		Advanced options	
	Cool (FEM) Solver Parameters		×
	Cycle averaged, part heat flux calculation		
	Conduction solver	 Number of part heat flux time steps 	[3:500]
	Mold temperature convergence tolerance	0.10000 [0.00001:0.5]	
	Maximum number of mold temperature iterations	50 [10:10000]	
	Number of threads for parallelization		
	Automatic	~	
	Include runners in automatic cooling time calc	ulations	
	Minor Loss	Calculate minor losses	~
	Friction formula	Swamee-Jain	~
	Simulate gravity effect	Edt gravity direction	
	Conformal cooling solver	Edit dravity dreator	
	Voxel solver	Voxel resolution Automatic V	
	FEM solver		
	Voxel solver		
		OK Cancel	Help
Vectory, core setting 7,00 parent Nata 3 722 3 Nata 2 Nata 5 Nata 5	amer (10)	Velocity	
/	Model courtesy of hi	ttp://www.hofmann-innovation.co	ст

Faster Conformal Coolant Flow 3D Solver (cont'd)

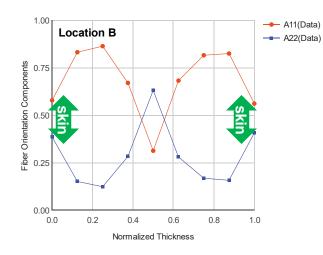
Analysis time				
Fine Voxel (1024)	Coarse Voxel (512)	AMI 2018.2 (FEM CFD)	Automatic	
1 hr, 52 min	27 min	4 hr, 39 min	11 min	

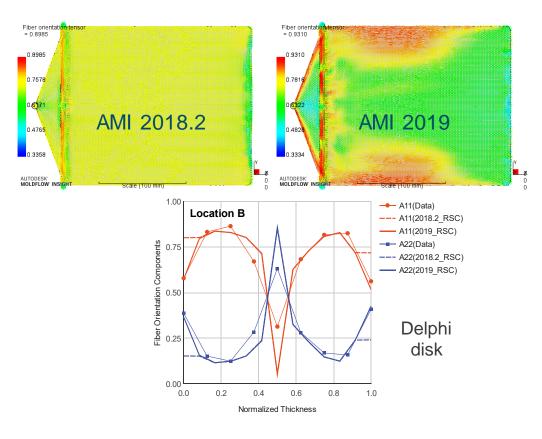
	Analys	is time	
Fine Voxel (1024)	Coarse Voxel (512)	AMI 2018.2 (FEM CFD)	Automatic
6 hr, 18 min	1hr, 15 min	18 hr, 15 min	1hr, 35 min


• Using automatic Voxel size determination, accuracy remains equivalent:


- Cavity Surface Temperature Average: 32.1°C (Voxel) vs. 32.3°C (FEM)
- Mold Exterior Temperature Average: 29.15°C (Voxel) vs. 29.18°C (FEM)

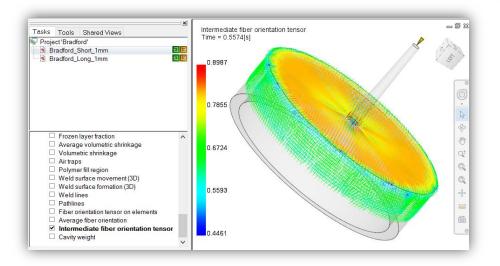
Fiber Solver Improvement – Shell Orientation


- Strong alignment in shell layers are controlled by fiber interactions
- Automatic MRD model parameters are improved

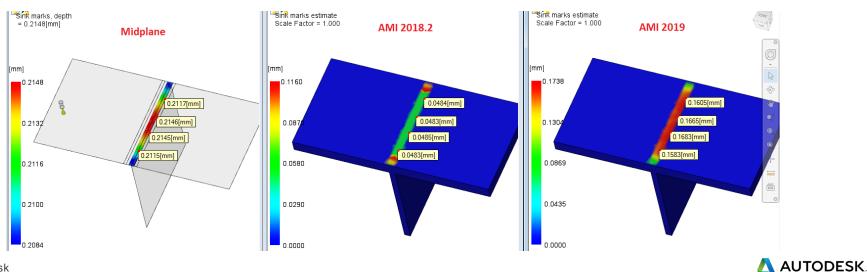


Fiber Solver Improvement – Skin Orientation

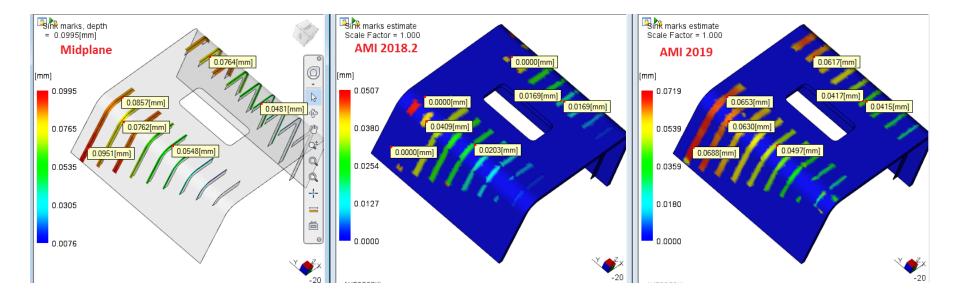
- Weak alignment in skin layers is due to fountain flow effect
- Fountain flow effect now considered for all 3D orientation models



Intermediate Fiber Orientation Result

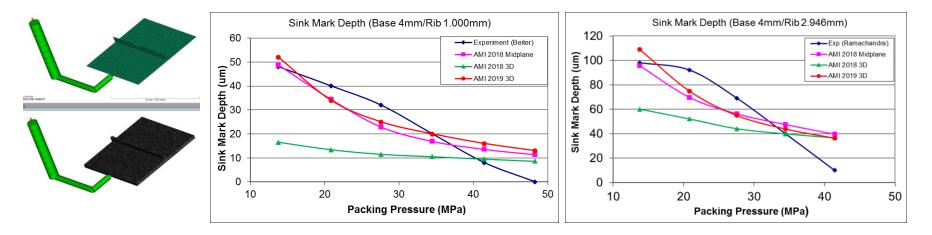

- Frequent request by advanced users
- Useful to better understand the evolution of fiber orientation

ber inlet condition at				
	~			
let condition				
aligned at skin / random at core	~			
te fiber breakage		namentes preussion processors nen es o famentes processors names porto		
nined by length	~	Fiber breakage param	ieters	
		Composite prope	rty calculation options	
put intermediate fiber orientation results				
Thermoplastics injection molding solver parameters	s (3D)			
				10
Fill + Pack Analysis Cool Analysis Cool(FEM) Analysi	s Fiber Analysis War	p Analysis Mesh Core Shift Venti	ng Analysis Interface Solve	rapi
Simulate inertia effect		Edit gravity direction		
Simulate wall slip Number of threads for parallelization		Edit wall slip param	eters	
Automatic		~		
Gate contact diameter				
Automatic		~		
Solver parameters				
		Filling parameters		
		Packing parameters		
Intermediate results				
Write at constant intervals		 Edit intervals 		
		Edit intervals		
Thermoplastics injection molding solver param	eters (Dual Domain))		
Market Paral Intermediate Output	D		Destas Westerna	0 01/2 M
Mesh/Boundary Intermediate Output Convergence			Restart Warp Analysis	
Dynamically update results display during analysi	S	Yes		~
Filling phase Regular result				
Write at constant intervals		 Number of regular results 	20	~
Profiled result				
Write at constant intervals		 Number of profiled result 	s O	~
None		- Internet or promed result	· ·	Ť
Write at constant intervals				
Write at specified times				
Write at constant intervals Write at specified times Write at constant intervals		Vumber of regular results	20	\checkmark
Write at specified times		Vumber of regular results	20	~


Sink Marks – Consistency Improvement

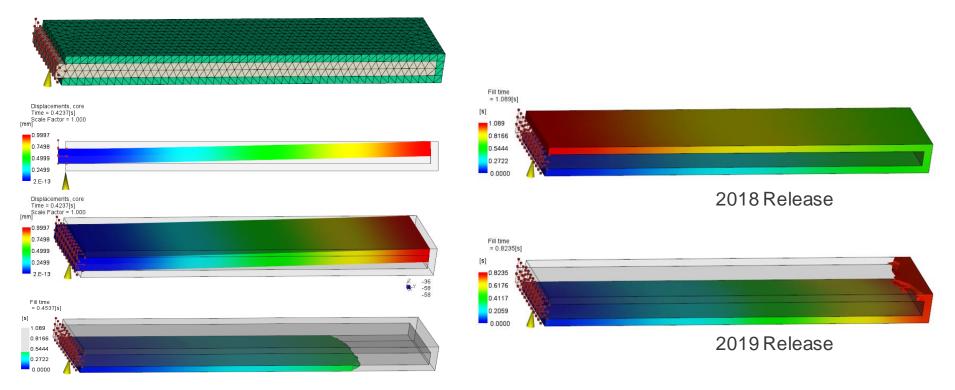
- Changed 3D and DD solvers to use the same formula as in Midplane solver for sink depth calculation
- Improved consistency in sink depth values between Midplane and 3D and between AMA and AMI
- Added sink mark analysis for 2-shot overmolding

Sink Marks – Robustness Improvement


Fixed the issue of missing sink marks in 3D in prior releases

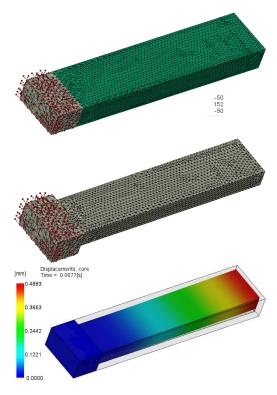
Sink Marks – Validation

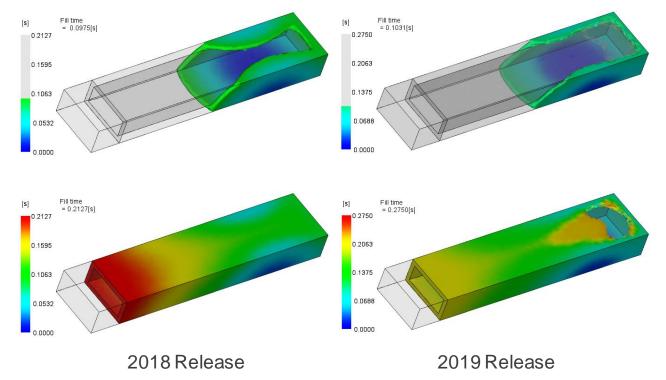
- In 2018 and prior releases, 3D solver predicted lower sink mark values than Midplane and experiment, especially for low packing pressures
- After the improvements in 2019, 3D predictions matched experiment and Midplane solutions much better



Source: "Geometry-Based Index for Predicting Sink Mark in Plastic Parts", K. Beiter, M. S. Thesis, Ohio State University, Columbus (1991).

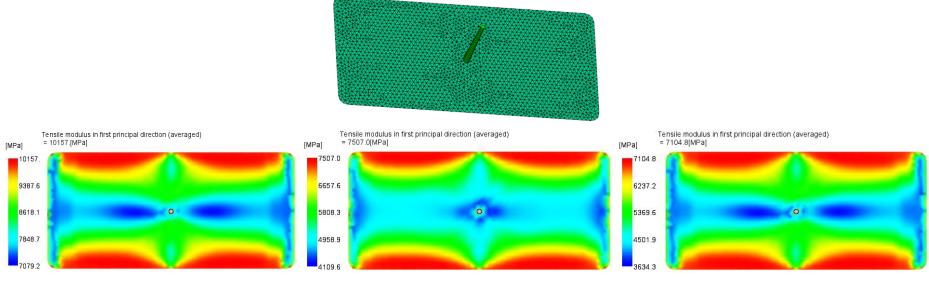
3D Core-Shift Analysis Improvements


Better handling the effects on flow of large core-shifts



3D Core-Shift Analysis Improvements (cont'd)

Large core-shift case



© 2018 Autodesk

Microcellular Injection Molding

- Fixed the problems in calculating mechanical properties in 2018 release:
 - Tensile modulus was higher than for conventional injection molding

2018 Release (10157 MPa)

Regular injection molding (7507 MPa) 2019 Release (7105 MPa)

Under Development

Research Disclaimer

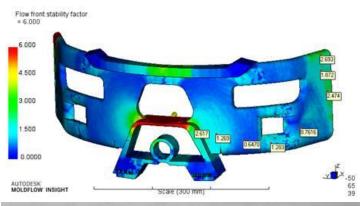
We may make statements regarding planned or future development efforts for our existing or new products and services. These statements are not intended to be a promise or guarantee of future delivery of products, services or features but merely reflect our current plans, which may change. Purchasing decisions should not be made based upon reliance on these statements.

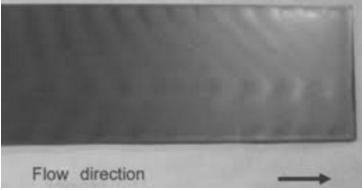
The Company assumes no obligation to update these forward-looking statements to reflect events that occur or circumstances that exist or change after the date on which they were made.

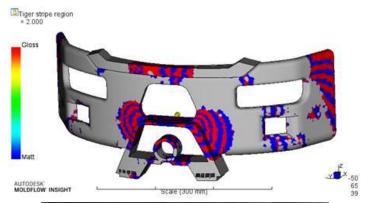
Mesh Type – Automatic selection

- Set mesh types (DD or 3D) automatically by an automatic classification
 - Current classification is by % of matched elements
- Examined a suite of models:
 - Manually classified by expert users
 - Compare with automatic classification by matched elements
 - Accuracy of automatic classification improved from 75% → 93% with new classification.

Passion Project Dr. Shoudong Xu


% of matched elements says this is suitable for Dual-Domain


experts and new classification recommend 3D



Prototype Tiger Stripes Prediction

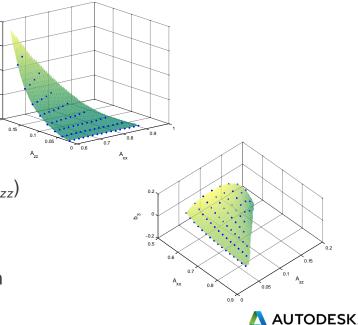
Collaborating with some automotive customers on validation

2-Parameter ARD Model for Long Fiber

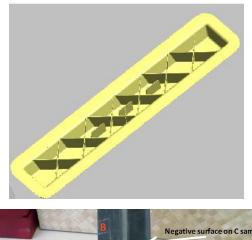
Original ARD model has five bi parameters

$$\mathbf{C} = b_1 \mathbf{I} + b_2 \mathbf{A} + b_3 \mathbf{A}^2 + b_4 \frac{\mathbf{D}}{\dot{\gamma}} + b_5 \frac{\mathbf{D}^2}{\dot{\gamma}^2}$$

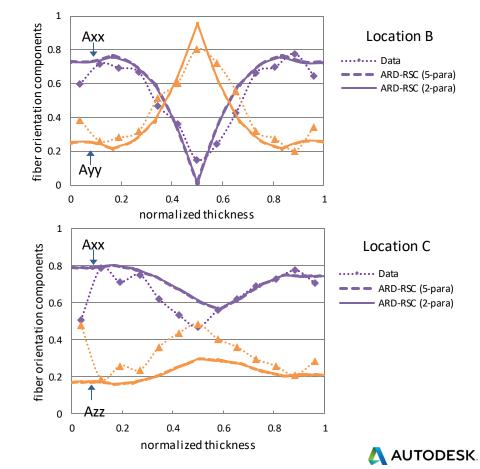
ARD bi Parameters			
b3 b4 b5			
86 0.02 0.000412 0			
89 0.04 -0.003874 0			
60 0.13 -0.009655 0			
74 0.08 0.005233 0			
17 0.02 0.000388 0			
89 0.04 -0.006146 0			


- Rotary diffusion tensor is simplified as
 - $\bm{c}=\bm{b}_1\bm{i}+\bm{b}_3\bm{A}^2$
 - b_1 and b_3 are determined by fitting to target orientation (A_{xx} , A_{zz})
 - Less parameters

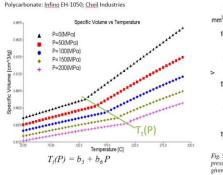
 more practical in applications
 - Independent on flow → easier to obtain stable solutions
 - No change of terms → easy to implement in existing program

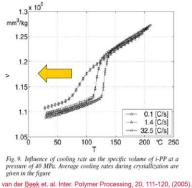

- b5 is normally zero
- b4 is normally small

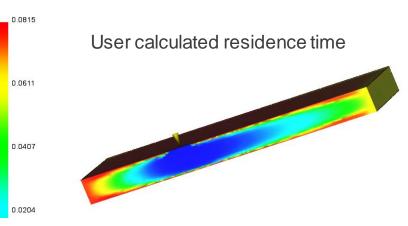
a 0.04


• b1 is small, but it is the isotropic term

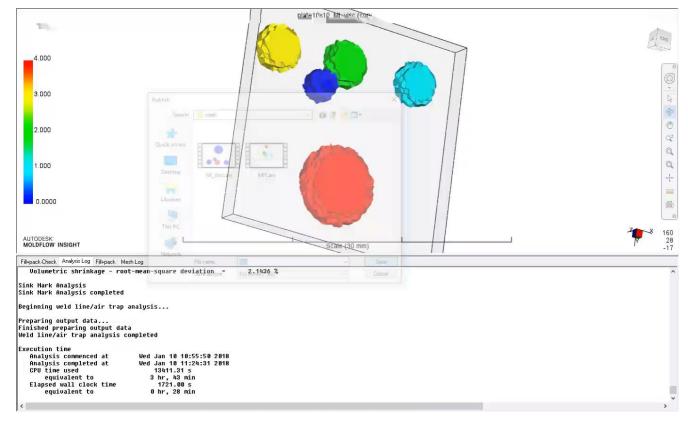
2-Parameter ARD Model for Long Fiber (cont'd)






Solver API – User Defined Scalar or Tensor

- Currently allows user coded routines for:
 - Viscosity
 - PVT
 - Solidification
 - Core-Shift



- New routines for user-defined variable $\frac{\partial X}{\partial t} = -v \cdot \nabla X + E(X, ...)$
 - Residence time
 - Fiber orientation
 - Crystallization
 - and more

Solver API – User Defined Scalar or Tensor (cont'd)

Tracking injection from multiple gates

Molded Component Assembly-Mounting Analysis

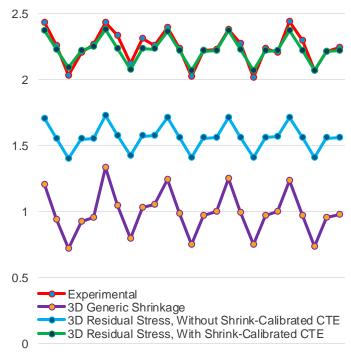
- Predicts final part deformation and residual stresses after assembly
- Top requested issue in Users' Group Meetings India and Europe

Warp Accuracy Improvements

STRESS_22 (MPa) 20.0

-10 (-20.0 -30.0 -40.0

ò


DIMENSIONLESS THICKNESS 2/1 0

DISTANCE FROM GATE. x/L

- Anisotropic Thermo-Viscoelastic Stress Model
 - Stress relaxation (viscoelastic)
 - Long cooling time effect
 - In-mold shrinkage
 - Liquid portion at ejection
 - Solidification sequence effect

3D Shrinkage Correction by Calibrated CTE

SN6786 (POM) Parallel Shrinkage

Polyurethane Foaming Prototype

Initial filling: By Injection or Initial Charge

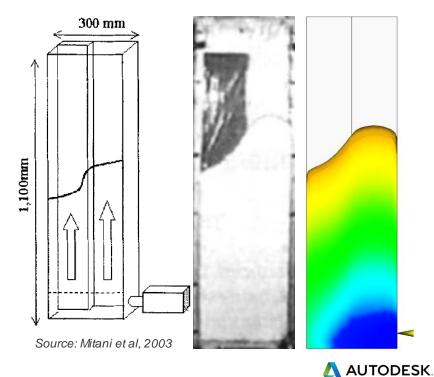
Mold surface temperature	30	С	
Melt temperature	30	С	
Filling method			
By injection		×	 Edit data
By injection By initial charge			
Curing time	900	s [0:]	

PU Foaming Process Data Blowing reaction kinetics data PBA (Physical blowing agent) data: Optional

Initial water concentration	1.276	% [0:10]
Initial OH concentration	42.25	% [0.1:99]
Initial NCO concentration	56.48	% [0.1:99]
Initial dissolved CO2 concentration	0.044	% [0:1]
Equivalent weight of OH	153.7	[1:10000]
Equivalent weight of NCO	135	[1:10000]
Chemical blowing agent kinetics		
н	4.78e+06	J/kg (0:1e+07)
m	0	[0:100)
n	1	[0:100)

5% initial filled by injection, then filled by foaming Initial melt temperature: 35°C [S] 521.2 390 260.6 130.3 0,0000 Temperature Time = 182.71s Temperature Conversion [g/cm*3] Density Time = 182 7(s) **Bubble Radius** Density Bubble radius Time = 182,7[s] 0.0929 AUTODESK.

Passion Project


Dr. Sejin Han

Polyurethane Foaming Prototype (cont'd)

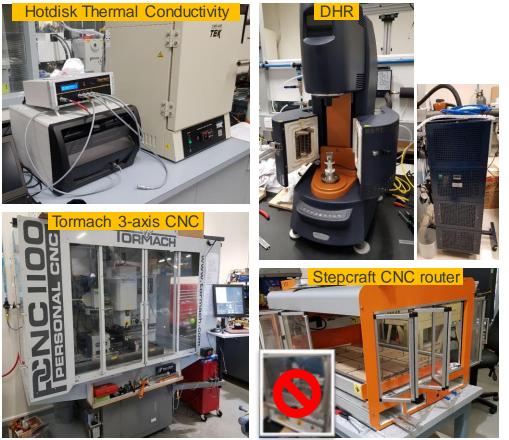
Density and Temperature vs. Time With different water concentration: 0, 1, 2, 3%

Density 1000 Exp (1) Exp (2) 800 ——Sim (3) Exp (3) 600 400 200 250 Time (sec 140 120 100 80 Exp (0) Exp(1) -Sim (2) Exp (2) Exp (3) Temperature Source: Baser et al. 1994

Variable Cavity thickness Left side: 35 mm, right side: 65 mm

Moldflow & Helius End-to-End Solution

Structure


Fill	OK
Fill + Pack Cool	
Looi Fill + Pack + Warp	Cancel
Cool + Fill + Pack + Warp	
Cool (FEM)	
Cool (FEM) + Fill + Pack + Warp	
Fill + Pack + Structural	
	 More

Material Testing Laboratory

Recent Investments in Materials Lab

- Hotdisk (Plane Source) Thermal Conductivity
 - Multi-sample
 - Range: 0.005 1500 W/(m•K)
- DHR (Discovery Hybrid Rheometer)
 - Viscoelasticity, Thermosets
- Tormach 3-axis CNC
 - Tensile bar insert, conductivity sample cells, weld line strength jigs, CTE
- Stepcraft CNC router
 - Specimen milling for mechanical, CTE, conductivity, rheometry

Recent Investments in Materials Lab (cont'd)

- Compressor
 - 24/7 operation provides overnight and weekend material drying
- PVT
 - Upgrades, PVT #2
- Mechanical testing
 - Jigs and fixtures
 - Temperature cabinet
 - -40°C to 100°C
- Gloss meter
 - Tiger-stripe project

In Progress Enhancements in Materials Laboratory

- CLTE
 - Enabling 4 materials a day
- PVT #3
 - Complete build from scratch
- Slit die
 - Detailed pressure distribution for viscosity in one test
- Battenfeld IMM upgrade
 - New barrel and screw

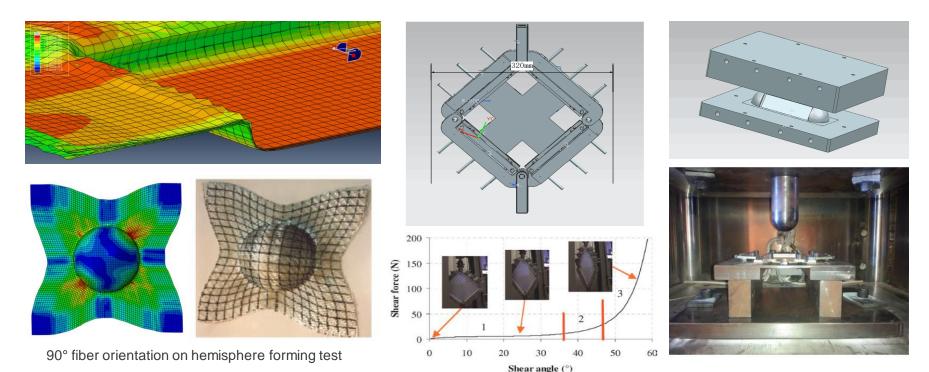
Planned Investments in Materials Laboratory

- New Arburg Injection Molding Machine (Electric)
 - July 2018
- New Injection Molding Rheometer

External Research Collaborations

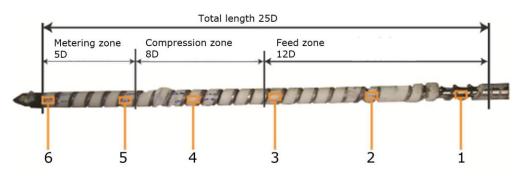
Injection Overmolding of Continuous Fibers Thermoplastic Composites

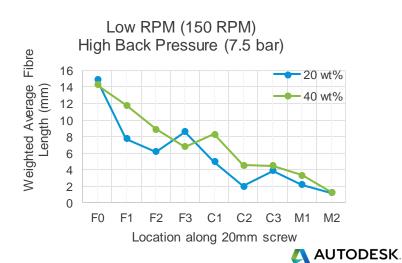
- High strength plus functional features
- Outcomes:
 - Demonstrator / Validation Data
 - Support anisotropic part inserts with strain loadings interface to forming simulation
 - Understanding of bonding mechanisms
- Renewed for 2nd Phase
 - Interface to Structural FEA (including Helius)
 - Bond Strength dependence on flow length



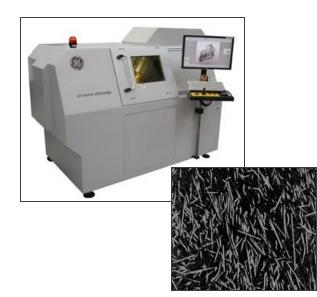
Composite Overmolding

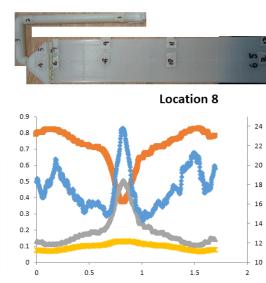
 Model non-recoverable deformation and resistance of a continuous fiber composite (pre-preg) being compression overmolded

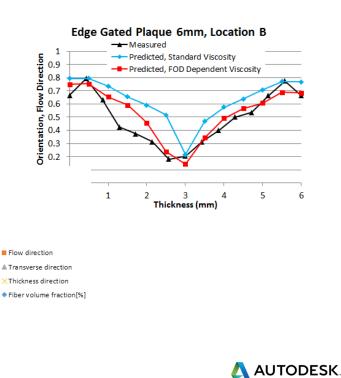



Fiber Breakage in Barrel

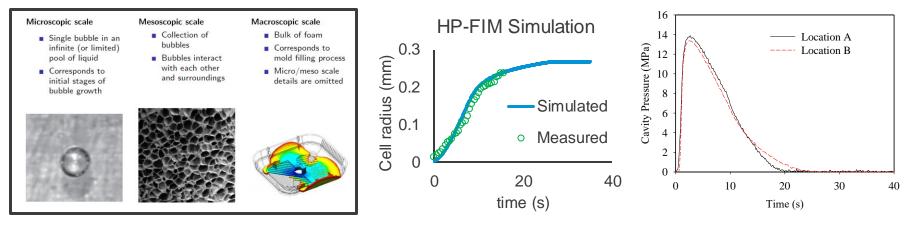
 Prediction of long fiber breakage during melting in injection barrel – as input for flow analysis in mold


- Outcomes:
 - Fiber length data along barrel
 - May use this to build a model for fiber breakage in the barrel



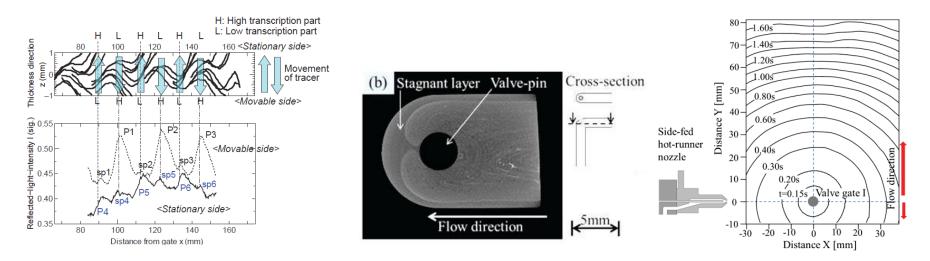

Coupling Fiber Orientation and Viscosity

- Measure orientation in samples by X-Ray CT
- Develop a model for fiber orientation effect on viscosity
 - Enables prediction of plug flow in core
 - Predict a wider fiber orientation core



Foam Injection Molding

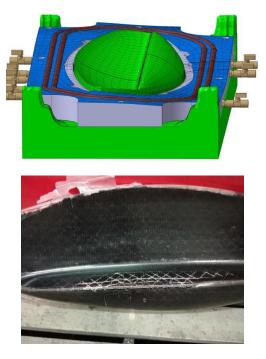
- Measurement and Modelling of Bubble Nucleation
- Outcomes:
 - Data on bubble growth
 - Potentially new modelling approaches



Yokoi Injection Molding Consortium

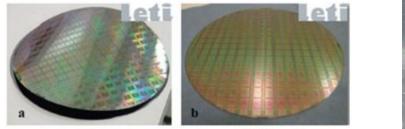
- Observing Fountain Flow Oscillation (Tiger Stripe)
- Flow Imbalance (Race-Track)
- Fiber breakage in barrel

Source: Yokoi et al. PPS-31, 144-148 & 350-354

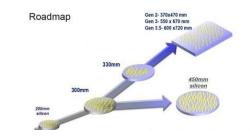


Resin Transfer Molding Validation

Commissioned RTM moldings to obtain detailed process data for validation



iNEMI Wafer/Panel Electronics Encapsulation


Study of Flowability and Warp of Microelectronics Panels or Wafers

Polymer 1

Polymer 2

AUTODESK. Make anything.

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2018 Autodesk. All rights reserved.