

Moldflow Summit 2017

Bend, Don't Break When Processing Long-Fiber Thermoplastic Resins

Erik Foltz, Max Zamzow, and Dayton Ramirez

The Madison Group www.madisongroup.com

\Lambda AUTODESK.

- An Independent Plastic Consulting Firm
 - Founded in 1993
 - Located in Madison, WI
- Helping Clients Optimize the Performance of Their Part Designs

AUTODESK

- Material Engineering
 - Material Selection
 - Product Design Evaluation
 - Structural FEA
 - Mechanical and Thermal Material Characterization
 - Aging and Compatibility
 - Product and Life Time Analysis

erik@madisongroup.com Madisongroup.com

🙏 AUTODESK.

- Processing Analysis:
 - Moldflow Analysis
 - Injection Molding
 - Compression Molding
 - Thermoset and Thermoplastic
 - Physical DOE Set Up and Analysis
 - Process Capability
 - Product Qualification

- Failure Analysis
 - Determination of Root Cause
 - Failure Type Assessment
 - Fractography
 - Destructive and Non-Destructive
 - On-site Support

Long-Fiber Thermoplastics

Material Selection

When Selecting Material Need to Consider:

- Performance Requirements
 - (Lifetime, Temperature, Stresses, Strains)
- Part Design
- Environment
- Cost

Metal to Plastic Conversion

 First Criteria of Material Selection is a Good Understanding of the Expected Performance Criteria of the Part

erik@madisongroup.com Madisongroup.com

MOLDFLOW SUMMIT 2017

Material Selection

Then it is Important to Understand Different Material Options

erik@madisongroup.com Madisongroup.com

MOLDFLOW SUMMIT 2017

Material Additives

Add Fillers to Improve the Properties of the Base Resin

	Filler	A/R	Types
	Sphere	1	Talc
	Plate /Flake	20-200	Mineral
	Needle	5-20	Milled Glass
	Fiber	20-200+	Glass Fibers, Carbon Fibers, Long Fibers

Metal to Plastic Conversion

- Improved Corrosion Resistance
- Ability to Net Form Final Shape
 - Part Consolidation
 - Eliminate Secondary Operations
- Reduced Part Weight and Cost

- Less Dimensional Stability
- Temperature Has Greater Role on Performance
- Need to Consider the Effects of Time
 - (Creep or Stress Relaxation)

Long-Fiber Thermoplastic Composites

- Development of Discontinuous Fiber Reinforced Thermoplastic Composites Have Increased the Opportunity for Thermoplastic Resins
 - PP
 - PA6
 - PA66
 - TPU
- Introduction of Long Fibers Allows for Improvements of:
 - Young's Modulus
 - Tensile Strength
 - Impact Strength
- Creep/ Fatigue Performance erik@madisongroup.com
 Moldisongroup.com

🖊 AUTODESK.

Long Fiber Thermoplastic Composites

 Examination of Datasheet Values Suggest that the Short-Term Performance of Long Glass Fiber Composites Approaches that of Traditional Materials

	Modulus	Ultimate Tensile Strength
6061 T6 Aluminum	68.9 GPa	310 MPa
60% Long Glass Fiber PA66	21.37 GPa	262 MPa

Potential of Achieving Datasheet Values

MOLDFLOW SUMMIT 2017

Madisongroup.com

🙏 AUTODESK.

Role of Fiber Orientation on Performance

Role of Fiber Length on Performance

- In addition to the Orientation of the Fibers in Molded Part, the Length of the Fibers Also Influences the Performance of the Molded Part
 - Short Fiber 300 -1000 μm
 - Long Fiber 1 mm 50 mm
- Fiber Length has a Significant Influence on:
 - Impact Strength
 - Young's Modulus
 - Tensile Strength

Role of Fiber Length on Performance

Matrix	Glass Fiber (Weight %)	Specific Gravity	Tensile Strength (10 ³ psi)	Tensile Modulus (10 ⁶ psi)	Flexural Modulus (10 ⁶ psi)	Impact Strength (ft. Ib/in)
Polyester SMC (Compression Molded)	30	1.85	12.0	1.70	1.60	16.0
Polyester BMC (Compression Molded)	22	1.82	6.0	1.75	1.58	4.3
Nylon 6 (Injection Molded)	30	1.37	23.0	1.05	1.20	2.3
Polyester (PBT) (Injection Molded)	30	1.52	19.0	1.20	1.40	1.8

Role of Fiber Length on Performance

人 AUTODESK.

Long-Fiber Thermoplastic Processing

- Another Advantage of Long-Fiber Thermoplastic Resins is the Use of Traditional Manufacturing Methods to Mass Produce Components
 - Extrusion (1- 20 mm Long Fibers)
 - Injection Molding (1- 12 mm Long Fibers)
 - Compression Molding (12 mm to 50 mm Long Fibers)

Final Fiber Length Distribution In Part

 Fiber Length in Molded Part is Substantially Shorter

Sample Location	Number Average Fiber Length L _n [mm]
Location 1	0.322
Location 3	0.299
Location 4	0.340

Critical Fiber Length

- In Order to Benefit from the Incorporation of Discontinuous Fibers, a Critical Length Must Be Attained
 - Otherwise Fibers Act as Inclusion and Stress Concentrators
- Based on Several Factors
 - Polymer Matrix
 - Fiber Sizing
 - Type of Fiber
- Critical Fiber Length for PP is:
 - 1.3 mm for Uncoupled
 - 0.9 mm for Chemically Coupled

Fiber Breakage Sources

- Three Primary Sources for Fiber Breakage During Injection Molding
 - Fiber Fiber Interaction
 - Fiber Wall Interaction
 - Fiber Matrix Interaction

Fiber Breakage Sources

These Conditions Are Most Predominant When There are Contractions in Flow

DSM Design Guide

Fiber Length Distribution In Molded Part

- Fiber Length Distribution in Molded Part is Representative of a Weibull Distribution with a Bias Toward Shorter Fibers
 - Initial Fiber Length 12 mm

Phelps et al Composites: Part A 51 (2013) 11-21

Fiber Length Distribution Nomenclature

- Two Predominate Ways of Describing Length of Fibers In Final Molded Part
 - Number Average Average Length Based on Number of Fibers
 - Weight Average Average Length Based on Total Weight

$$\overline{L_n} = \frac{\sum N_t l_t}{\sum N_t} \qquad \overline{L_W} = \frac{\sum N_t l_t^2}{\sum N_t l_t}$$

- $N_t = Number of fibers at time t$
- $l_t = Length of fibers at time t$

erik@madisongroup.com Madisongroup.com

🔼 AUTODESK.

Fiber Length Distribution Nomenclature

 Number averaged length ≤ weight averaged length

$$\overline{L_n} = \frac{\sum N_t l_t}{\sum N_t} \qquad \overline{L_W} = \frac{\sum N_t l_t^2}{\sum N_t l_t}$$

 $N_t = Number of fibers at time t$

 $l_t = Length of fibers at time t$

Fiber Breakage Model

Fiber Breakage Model

- Autodesk Moldflow Implemented Fiber Breakage Model Based on Hydrodynamic Loading of Fiber (Fiber Matrix Interaction)
- Fiber Break Due to Buckling Load From Differences in Velocity

Fiber Breakage Model: Critical Load

- Fibers Will Break When Hydrodynamic Forces Exceed Critical Buckling Force
 - Based on Eulerian Buckling Conditions

- $F_i = Hydrodynamic \ Compression \ Force$
- *F*_{crit} = Critical Buckling Force
- $\zeta = Drag Factor$
- $\eta_m = Viscosity$
- $l_i = Fiber Length$
- $E_f = Fiber \ Elastic \ Modulus$
- $d_f = Fiber Diameter$
- \widehat{D} = Deformation Rate Tensor
- $\hat{A} = Fiber \, Orientation \, Tensor$

http://help.autodesk.com/view/MFIA/2017/ENU/?guid=GUID-4FBB0674-91DE-415D-AE64-D230656C98AB

Fiber Breakage Model

- Therefore, Fiber Breakage Is Dependent on Aligning the Orientation of the Fibers With Critical Hydrodynamic Forces
- Need Probability Equations for When Critical Loading Condition and Fiber Orientation Coincide

Phelps et al Composites: Part A 51 (2013) 11-21

erik@madisongroup.com Madisongroup.com

人 AUTODESK.

Fiber Breakage Model: Probability Function

Fiber Breakage Model: Child Fiber Generation

- L = Initial fiber length
- N(I,t) = Number of fibers with length I at time t
- P(I) = Scalar probability function of fiber length I
- R(I,I') = Probability function of fiber length and fiber breakage to form a fiber length I' (where I'<I)

Phelps et al Composites: Part A 51 (2013) 11-21

*Can be expressed as a Gaussian breakage profile

erik@madisongroup.com

Madisongroup.com

MOLDFLOW SUMMIT 2017

🙏 AUTODESK.

Fiber Breakage Model: Child Fiber Generation

- Probability of the Breaking Fiber to Break into Different Length Child Fibers
- Assumes Highest Probability Will Result in Fiber Breaking in Half

$$R(l,l') = G_{norm}\left(l,\frac{l'}{2},Sl'\right)$$

= Variable (Fiber Length)

$$\frac{l'}{2} = Mean$$

- Sl' = Standard Deviation
- = Scaling Factor S

Phelps et al Composites: Part A 51 (2013) 11-21 erik@madisongroup.com Madisongroup.com

Fiber Breakage Model: Model Parameters

- Model Consists of Three Parameters:
 - ζ Influences Minimum Fiber Length for Breakage
 - C_b Controls the Probability of Fiber Breakage
 - S Controls How the Parent Fiber Breaks into Children Fibers
- Additionally, User Can Provide Fiber Length Distribution at the Inlet Location

er breakage parameters		×
Fiber length at inlet option		
Assume all are the same length		▼
Output fiber length probability profile		
Yes		 Fiber length probability node list
Parameters for fiber breakage		
Anisotropic drag coefficient (Dg)	3	
Shear rate constant (Cb)	0.002	
Probability profile control factor (S)	0.25	[0:1]

Fiber Breakage Model: Parameters

- ζ Influences Minimum Fiber Length for Breakage
- C_b Controls the Probability of Fiber Breakage
- S Controls How the Parent Fiber Breaks into Children Fibers

Fig. 5. Weight-based fiber length distributions at intermediate time, $t^* = 2$, for different values of the model parameters *S* and L_{ub} in steady simple shear flow. $(t^* \equiv C_B \dot{\gamma} t)$.

Phelps et al Composites: Part A 51 (2013) 11-21

erik@madisongroup.com

Madisongroup.com

MOLDFLOW SUMMIT 2017

🙏 AUTODESK.

Fiber Breakage Model: Parameters

- ζ Influences Minimum Fiber Length for Breakage
- C_b Controls the Probability of Fiber Breakage
 - Also Time to Reach Steady Stat
- S Controls How the Parent Fiber Breaks into Children Fibers

Fig. 6. Weight-based fiber length distributions at long time, $t^* = 10$, for different values of the model parameters *S* and L_{ub} in steady simple shear flow. ($t^* \equiv C_B \dot{\gamma} t$).

erik@madisongroup.com
Phelps et al Composites: Part A 51 (2013) 11-21
Madisongroup.com
AUTODESK.

Fiber Breakage Model: Results

- Simulation Can Provide Information on:
 - Number Average or Weight Average Fiber Length

erik@madisongroup.com Madisongroup.com

Fiber length averaged by number = 1.476(mm)

17

1 406

1.336

1.265

Fiber Breakage Model: Results

- Simulation Can Provide Information on:
 - Number Average or Weight Average Fiber Length
 - Fiber Length Probability Distribution

🖊 AUTODESK.

Fiber Breakage Model: Results

- Simulation Can Provide Information on:
 - Number Average or Weight Average Fiber Length
 - Fiber Length Probability Distribution
 - Linear Elastic Composite Properties

Fiber Properties

- Simulation Can Provide Information on:
 - Number Average or Weight Average Fiber Length
 - Fiber Length Probability Distribution
 - Linear Elastic Composite Properties
- In order to Get Good Mechanical Characterization, Need to Have Good Filler Characterization
 - Also, Need to Obtain Good Fiber Orientation

ARD-RSC model for long fibers		Ŧ	View settings
Fiber orientation calculation (3D) by			
ARD-RSC model for long fibers			View settings
Filler data			
Description Weight			
20			
1 Long Glass Fiber 30			
Density (rho)	26	n/cm^3	
Specific heat (Cp)	700	J/kg-C	
Thermal conductivity (k)	1	W/m-C	
Mechanical properties data	1,28		
Elastic modulus, 1st principal direction (E1)	72999.9	MPa	
Elastic modulus, 2nd principal direction(E2)	72999.9	MPa	
Poissons ratio (v 12)	0.23		
Poissons ratio (v23)	0.23		
Shear modulus (G12)	29680	М	Pa
Coefficient of thermal expansion (CTE) data			
Alpha1	5e-06	1/C	
Alpha2	5e-06	1/C	
Tensile strength data			
Parallel to major axis of fiber/filler	3500	MPa	
Perpendicular to major axis of fiber/filler	3500	MPa	
Aspect ratio (L/D)	575		
Filler length information			
Initial Length	10	mm	
Measurement method	Not specified	1	
Year measured	2010		

Fiber Breakage Correlation

- Goal: Correlate the Fiber Length Model to Molded Parts
- Geometry: Modified Tensile Bar
- Material: 30%wt Chemically Coupled Long Glass-Reinforced PP
 - Initial Fiber Length 10 mm
- Injection Molded
 - Tunnel Gate into End of Bar
 - Varied Gate Size and Fill Time

Performed Correlation Studies at Three Locations per Bar

- Performed Baseline Analyses
 - Assumed all Fibers were 10 mm in Length
 - Ran Simulations with:
 - Midplane and Full 3D
 - Beam Elements for Runners
- Fill Parameters:
 - Gate Size 0.040" and 0.70 second Fill Time
 - Gate Size 0.015" and 0.40 second Fill Time

Solver	Gate	Fill Time	Gate (Number Average)	Middle (Number Average)	End (Number Average)
Midplane	0.040"	0.70 second	6.73	6.98	7.63
Midplane	0.015"	0.40 second	6.68	6.91	7.42
3D	0.040"	0.70 second	0.78	1.24	1.29
3D	0.015"	0.40 second	0.78	0.91	0.93

erik@madisongroup.com Madisongroup.com

🙏 AUTODESK.

1. Sample Preparation

AUTODESK.

2. Image Processing

Automatic Fiber Detection

Data Analysis

Goris, Osswald 2017

Illustration of dispersed fibers (approx. 7,500 fibers per scanned image)

erik@madisongroup.com Madisongroup.com

MOLDFLOW SUMMIT 2017

Goris, Osswald 2017

MOLDFLOW SUMMIT 2017

Correlation Study: Results

erik@madisongroup.com Madisongroup.com

MOLDFLOW SUMMIT 2017

🙏 AUTODESK.

Fiber Breakage Study: Measurements

Solver	Gate	Fill Time	Gate (Number Average)	Middle (Number Average)	End (Number Average)
Midplane	0.040"	0.70 second	6.73	6.98	7.63
Midplane	0.015"	0.40 second	6.68	6.91	7.42
3D	0.040"	0.70 second	0.78	1.24	1.29
3D	0.015"	0.40 second	0.78	0.91	0.93
Measured	0.040"	0.70 second	0.52	0.51	N/A
Measured	0.015"	0.40 second	0.43	0.38	N/A

Fiber Breakage Study: Inlet Conditions Measurements

Measured Fiber Length at the Tip of the Sprue

erik@madisongroup.com Madisongroup.com

🙏 AUTODESK.

Fiber Breakage Study: Measurements With Inlet

Solver	Gate	Fill Time	Gate (Number Average)	Middle (Number Average)	End (Number Average)
Midplane	0.040"	0.70 second	6.73 [1.44]	6.98 [1.47]	7.63 [1.51]
Midplane	0.015"	0.40 second	6.68 [1.43]	6.91 [1.46]	7.42 [1.50]
3D	0.040"	0.70 second	0.78 [0.48]	1.24 [0.54]	1.29 [0.55]
3D	0.015"	0.40 second	0.78 [0.45]	0.91 [0.53]	0.93 [0.53]
Measured	0.040"	0.70 second	0.52	0.51	N/A
Measured	0.015"	0.40 second	0.43	0.38	N/A

Correlation Study: Results

Tensile Modulus in First Principal Direction

Predicted Mechanical Properties With and Without Fiber Breakage Implemented

Tensile Modulus in First Principal Direction

Predicted Fiber Orientation With and Without Fiber Breakage Implemented

- Fiber Orientation Prediction is the Same With and Without Fiber Breakage
- Therefore, Differences are a Result of Fiber Breakage

AUTODESK

Correlation Study: Results

Correlation Study: Number of Fibers Above Critical Length

erik@madisongroup.com Madisongroup.com

MOLDFLOW SUMMIT 2017

Conclusion

- When Selecting Discontinuous Glass-Reinforced Composites it is Important to Account for the Effects of Processing on the Performance of the Material
 - Fiber Orientation
 - Fiber Length
- Fiber Breakage Code Can Provide a Indications of Fiber Length Trends
- How the Melt is Prepared is More Critical than Gate Design and Sizing for Maintaining Fiber Length
- A Method of Measuring a Large Number of Fibers in Different Areas Has Been Developed to Characterize the Fiber Length Distribution

MOLDFLOW SUMMIT 2017

Acknowledgements

- Max Zamzow, Dayton Ramirez, Matt Dachel and TMG Colleagues
- Sebastian Goris, Sara Simon
- Michael Miller
- RTP for Resin

