

Moldflow Summit 2017

Closing the Loop with Simulation Validation

Curt Randall – GE Appliances, a Haier company

Sr. Advanced Manufacturing Engineer

Learning Objectives

- Simulation Validation
 - Description
 - Benefits
 - Process
- Keys to successful simulation validation
- Case Study
- Future Work

Typical CAE Process

MOLDFLOW SUMMIT 2017

Closing the Loop with Simulation Validation

- Gather actual data
- Make changes and re-run
- Part metrology
- Compare vs. actual
- Historical database
- Simulation improvement

Simulation Validation

Simulation Validation

- Validate (Definition from the Oxford Dictionary)
 "Check or prove the validity or accuracy of ...(something)"
- The engineer's job is make data driven decisions to solve complex problems
- Validation provides confidence in the results

The Million Dollar Question

- How accurate is Moldflow simulation?
- As analysts we have all been asked this question at one time or another.

The 5¢ Answer

- This is the typical answer given to this question
- We need to gain confidence in the results
- This is accomplished through simulation validation

Simulation Validation Benefits

- Completes the product development cycle
- Provides data points for historical database
- Helps Autodesk continuously improve simulation accuracy
- Builds confidence in simulation results

Simulation Validation Process

- Incorporate sensors into the tool
- Record actual process setup/machine data
- Capture actual melt/mold temperature
- Collect pressure curves for multiple cycles
- Collect multiple parts for part metrology
- Collect fill only part for short shot comparison
- Collect part/cavity/runner system weights

Simulation Validation Process, continued

- Compare with initial simulation
- Measure actual part wall thickness
- Make necessary model adjustments and re-run simulation
- Measure parts with scanning or CMM
- Compare results and document for future use
- Share with Autodesk Simulation Validation team for future software enhancements

Keys to Successful Simulation Validation

The Keys to Successful Simulation Validation

- Material characterization
- Model/Mesh preparation
- Custom machine information
- Accurate process conditions
- Capturing actual melt/mold temperature
- In cavity process monitoring
- Metrology for molded parts

Material Characterization

- The accuracy of the results depends on the quality of the material characterization.
- Material Quality Indicators
 - Filling
 - Packing
 - Warpage
- Three Levels

Material Quality Rating

- Gold Rating
 - High confidence in quality material data
- Silver Rating
 - Combination of well tested and supplemental material data
- Bronze Rating
 - Incomplete data sets and extensive use of supplemental data

	Gold	Silver	r Bronz	eU <mark>nknown</mark>
Fill Quality	₹ <mark>o</mark>	£	Đ	₹O
Packing Quality	•	•	•	Bo
Warpage Quality	0	Ч_	10 <mark>0</mark> 0	ro B

>>EXPERT TIP<<

- Use gold Level material data for accurate results
- Spend the money to get your material characterized
 - Contact Beaumont Technologies, Inc. http://www.beaumontinc.com/ 1-(814)-899-6390

Part/Mold Modeling & Mesh

- Use Theory & Concepts Model Requirements
- Apply mold material properties
- Cooling Lines and mold with inserts
- Machine nozzle
- Accurate wall thickness
- Use of expanded CAD Data
- Clamp Force calculations

Model with Inserts and Cooling Lines

Include Machine Nozzle

- Capture pressure drop through machine nozzle
- Can be significant

Measure Actual Part Wall Thickness

- A small amount of error in set-up or machining can have a significant impact on final part wall thickness or flow.
- Use band saw & calipers/micrometers
- Ultrasonic Thickness Gage

To Expand or not to Expand?

- That is the real question.
- Use original CAD for initial simulation
- Use expanded data for simulation validation.
 - Matches meshed mold and inserts
 - Matches cooling line geometry

Test Your Knowledge!

 How does the software calculate the projected area of a part mesh?

Sum of all surface areas projected onto X-Y plane

>>EXPERT TIP<<

- Use the "exclude from clamp force calculation" option in element properties
- This is especially true if you are conducting clamp force simulation validation

Process Conditions

- Machine settings
 - Fill & transfer
 - Pack/hold
 - Cooling
 - Mold open/close time
- Mold/melt temperature
- Valve gate settings
- Robot PTO time

					_			PR	ESS	; #: 5	510					_				
PRESS #:		5-10	5-10 MOLD # : Liner PAR						ART REMOVAL: Robot			Robot								
TONNAGE	E:	2300) C	AVITIES (#):	1								_ R.	JG TI	EMPL	ATE:	Yes		
MATERIA	L:	ABS Che	il HG-07	'60GP (W	HITE)		MTL	STK	#:		STK/	44674	1	SIL	0 # : 3		Rl	JN M	ODE:	Auto
COLORA	NT:	N/A					COL	OR S	STK #	ŧ.	N/A			BO	X #: N/A	4		LD	R %:	N/A
Clamp Clo	se					Molo	Pro	tect			Iniec	tion				_			Proce	ss Data
	3		2	1			1						3	5	2		1		Cycle	Time (s)
Velocity	N/	A N	VA	29.00 ii	v/s	2.	00	in/s			Vel		N	A	N/A	2	.95	lin/s	75	5.40
					Pres	80	00	psi			Limit		N	A	N/A	18	000	psi	Inj Fill	Time (s)
Pos	N/	A N	VA 4	40.000 ii	Time	3.	00	s			Tran	s	N	A	N/A	18	000	psi		
-				Start M	IP Pos	34.	630	in			Pos		N	A	N/A	2.	100	lin	Cush	ion (in)
						_	Mold	Touc	:h		Time	.	N	A	N/A	3.	.50	s	0.	537
Clamp Op	en	3	2	1	_	Molo	Heig	aht											Transfe	r Pos (in)
Velocity		N/A	25.00	0 1.5) in/s	66.	631	in			Pack	k / Ho	bld		Stages		1		2	000
Position		N/A	74.50	0 42.10	00 in	Eit B	ack F	ositio	n				3	5	2		1		Recover	v Time (s)
Open Dwe	l Tim	A		0.0	8	1.9	56	in			Vel	- 1	N	A	N/A	0	50	in/s	1	3.5
Tonnage S	Settin	-		200) tons						Prs		N	A	N/A	62	200	DSi	Ini Peak	Press (psi
Elector Fo	orwa	d									Time	.	N	A	N/A	12	2.00	s	10	951
On	1	2		s	tart Ejt F	wd												-	Mold Ope	en Time (s
Vel	2.8	00 2.4	300 in	√s Γ	74.000	in		Extr	uder											. (=
Pos	4.7	50 7.0	000 in	, F	'ulses			Cool	Time			14	1.0	s	Ext Dela	v	0	s	Robot	Time (s)
Time	0.0	0.0	000 s	Г	1	1		Shot	Size			9.5	500	in		·				
Ejector R	etrac	t								1				Decc	mp				Part W	eight (lbs)
	2	1		F	'ulse Ret	ract		Spd		10	00	rom			Before		Afte	r	7	.45
Vel	1.5	00 4.	00 in	/s 「	1.000	lin		Prs		75	50	osi		Vel	0.10	0.	.75	in/s	Shot W	eight (lbs)
Pos	1.9	69 2.3	300 in	Eit Bac	k Limit Sv	vitch	On							Pos	0.000	0.	500	in	7	.45
Barrel Ter	nper	atures				Valv	e Gat	te Se	quen	ce										
	Ň	4 3	2	1 F					1	2	2	1	3	4	L .	5		6	7	8
Set (F)	425	440 440	440 4	40 120		Oper	1 (s)	0.	50	1.0	00	0.	00	0.1	75 (0.50	3	.50	1.25	1.25
			-			Clos	e (s)	0.	00	0.0	00	0.	00	0.0	00 00	0.00	0	.00	0.00	0.00
Actual I	Velt 7	emp (deg	(F)	454	Air Purge	Mold	Gate	G	i1	G	12	G	33	G	4	G5	. (36	G7-G8	G9
Cores	0	4	Co	res Used	#):	6		Stati	onary	/ Side	#:	2,4	4,6	Movi	ng Side #	ŧ:	1,	3,5	Mold Wa	ter
Seq Cor	'e #	Action		Cycle Pol	nt	Vel%	(p	si)	Timer	Dela	y (s)	Time	e (s)	Hold	Pres Str	Pt (in)) Mon	Pt (in)	TCUF	xed Side
1 3	3	Set	Parallel	with Clamp	Close	9	15	00	N					Ye	as 75	5.000		-	Set (F)	120
2 '		Set	After Cla	amp Tonna	ge Build	65	17	00	N	-				Ye	38	-	-	-	Cir3(gpm	
3 :	>	Set	After Ck	amp Ionna	ge Build	30	13	00	Y				-	¥6	36	-	-	-	Cir4(gpm	Line Cide
4 4	1	Set	After Ca	amp Tonna	ge Build	13	10	00	N						15		-	-	CO MC	Ming Side
6 7		Dull	Puter Ca	Cloppe Dee	Je Dulu	20	16	00	N	-		-	-		20	-	-	-	CirE(mm	120
7 4	-	Pull	Before (Clamp Dec	moreen	20	19	00	N	-		-		- TE	20	÷	-	<u>.</u>	Cir6(gpm	
8 4	5	Pull	After CH	amn Dec~	Intess	30	16	00	N		.			Y	15	-	1	-	oo(gpm	
9 3		Pull	After Cla	amp Decor	press	15	15	00	N		.			Ye	36	-	1	-	1	
10	1	Pull	After Ck	amp Decor	press	45	16	50	N					Ye	as l	-	1	-	1	
11 6	3	Pull	Parallel	w/Clamp C	pen	35	50	00	Ν	-				Ye	s	-		-	s	tationary
12 6	3	Set	Parallel	w/Clamp C	pen	80	10	00	Ν	0.5	50			Ye	s	-		-	Sic	le Hyd Ejt
Hot Runn	er Te	mperatu	res																	
Zone #	1		2	3	- 4	4	5	6	3	- 7	7	8	в	g)	10		11	12	
Temp (F)	40	0 4	15	415	415	- 41	15	- 41	15	- 40	00	- 4'	15	41	5	400	4	15	415	Drops
Zone #	1	1	4	15	16	1	7	1	8	1	9	2	0	2	1	22		23	24	
Temp (F)	40	0 4	15	415	400	4	15	- 4'	15	40	00	- 4'	15	41	5	400	4	15	415	Manifold
Zone #	- 2	5 2	26	27	28	2	9	3	0	3	1	3	2	3	3	34		35	36	
Temp (F)	40	0 4	15	415	400	4	15	- 4'	15	41	15	- 4'	15	41	5 4	415	4	15	415	Tips
Zone #	37		38	39	40	4	1	4	2	4	3	4	4	4	5	46		47	48	-
Temp(F) 415																				
Machine Digital Inputs/Outputs																				
~ # T		Function	or Input	Time (s) Des	criptic	n of I	nput	g	#	~	Fund	tion S	select	100		Des	criptio	on of Outp	ut
5 118	Un Off	Ejector is	Retract	ea 0.0	Can	era I	rigge	r	5		un	Clarr	np Clo	se Pe	ermission		Stat	ionar	/ Camera	
Ē 2	JII 244				_			_	Ë	2	Un On	Clam	np Clo	se Pe	ermission		MOV	ing C	amera	1.01
= 138	JII				_			_	ŏ	3	un	Clam	il Clo	se Pe	mission		MOK	a vvat	HI FIOW N	a UK
4 1	JII									4	Un	Ciam	np Clo	se Pe	ermission		IH/R	vvate	r ⊨iow No	UK

Test Your Knowledge!

What is the shot size of the following machine setup?

AUTODESK.

>>EXPERT TIP<<

- Use absolute ram speed profile and transfer position for accurate results
- Do not be tempted to use a fill time and 98% volume switch-over

Custom Injection Molding Machine Database

- Required for simulation validation
- Specific machine information is needed

Injection stroke Injection rate Screw diameter # of RAM speed steps # of pressure steps Maximum injection pressure Intensification ratio Hydraulic response time Maximum clamp force

Using Cavity Pressure Sensors

- Process Control (V/P transfer)
- Process Monitoring (Mtl variation, short shots)
- Process Setup Transfer (Machine to Machine)
- Traceability / Genealogy
- Quality Control
 - Cavity Rejects/Containment
 - Sorting
- Pressure Validation

Pressure Sensor Locations

- Post Gate Sensor (PG)
 - As close to the gate as possible
- End of Fill Sensor (EOF)
 - As close to end of fill as possible

Pressure Trace

MOLDFLOW SUMMIT 2017

Decoupled Molding® DII (RJG, Inc.)

- Establish fill only part
 - Fill as fast as the machine, mold and part quality will allow without being pressure limited
 - 95-98% Full
- Transfer to pressure control
 - Finish filling the cavity
 - Complete Pack/Hold (packing pressure 50-80% of max fill pressure)

Part Metrology

1, 100 1, 100

Scanning Setup

Targets applied to part

Blue Light 3D Scanning Simple Fixture. Part in free state

3D Scanned Part

MOLDFLOW SUMMIT 2017

Part Deviation Analysis

- Data is compared to show deviations
 - Scanned part to CAD
 - Simulated warped part CAD to scanned part
- Allows use of custom anchor planes
- Uses GDT with custom reports from analysis

MOLDFLOW SUMMIT 2017

Melt/Mold Temperature

- Obtaining accurate melt and mold temperature readings can be a challenging task.
- Handheld pyrometers (rapid response)
 - Melt temperature
 - Mold surface temperature
- Thermal imaging cameras
 - Use for Mold/Part Temperature
 - Check part at ejection
 - Check mold at ejection and before clamp close

In-Mold Thermocouples

- Team up with pressure transducers in your instrumented mold
- Captures transient mold temperature
 - Temperature of steel throughout the entire cycle
 - Capture mold start up temperature to equilibrium
- Add thermocouples to slides/lifters

Simulation Validation Case Study

Simulation Validation Case Study

Part: Appliance Part Material: Filled PP (Gold Data) Gate: Valve Gate Analysis Type: Dual Domain & 3D mesh Analysis Sequence: Fill, Cool, Fill, Pack, Warp Mold Shrinkage: Cut to .012in/in

Short Shot Sequence

Pressure Trace vs. Simulation (Continued)

5600 psi packing/hold pressure

Actual pressures from in cavity pressure sensors

*Machine nozzle pressure loss = 1,776 psi

Part Shrinkage vs Simulation

SHRINKAGE VALIDATION

	Actual	DD	3D		
Dia (in)	11.2606	11.25	11.29		
Shrinkage (%)	1.05%	1.21%	0.81%		

Mold Temperature vs Simulation

Part Deflection Validation

- Deviation analysis from Polyworks software
- Compares scanned molded part with exported warped CAD from Moldflow

Exporting Warped CAD Geometry

- 3D Printed warped parts
 - Evaluate assemblies
- Can export actual or opposite direction
- Useful for early prototype builds

Export Warpage M	esh/Geometry		X
Format ASCII STL) Binary STL	🔘 Model File	CAD File
Unit	31	•	
Direction	ctual	Onnosite	
	Liuai	Opposite	
Scale factor		1	
		ОК Са	ncel Help

Part Deflection Validation (continued)

Part Deflection Validation (continued)

Part Deflection Validation (continued)

Blue is Warped Part CAD exported from Moldflow

Red is 3D Scanned Part

- Learned about of simulation validation
- Discussed the keys to success
- Learned about the importance of sensors for validation
- Reviewed preliminary case study results
- Investigated how to use scanning to compare predicted vs actual dimensions

Future Work

- Model & mesh mold in 3D
 - Core/Cavity
 - MoldMax Slides
- Run with Insight v2018
- Conduct 3D simulation with Cool (FEM)
- Conduct optimization analysis
- Currently working with Moldflow Validation Team (Syed.Rehmathullah@autodesk.com)

Autodesk, the Autodesk logo, and Moldflow are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2017 Autodesk. All rights reserved.