Autodesk Moldflow Moldflow Research & Development Dr Shishir Ray

Research Manager: Geometry, Mesh, & Solver

Research & Development

Research In-house 24 PhD employees in Moldflow development A Lab with state-of-the-art equipment Four modern injection molding machines for test & validation Establishing a network of third-party Labs

Academic Research Collaboration Six Universities with seven PhD students

Industrial Research Partnerships Over 20 companies and institutions

Slide 2 of 45

Auto Sizing for CAD

<u>AMI 2017</u>: One global edge length, no chord angle. **10 M** Tets.

<u>New</u>: Separate global edge length for each body. Chord angle on selected faces. **1.7** M Tets.

7 days to 4min.

Create CAD Bodies for Mold Blocks

Previously, mold blocks are represented by regions. Users need to stitch contact interfaces to form mold internal boundary

Now we can create CAD bodies for mold blocks. Users do NOT need to stitch contact interfaces manually

Internal components

CAD body for mold block

Surface mesh for mold block

Slide 4 of 45

Define Your Own Feature - DYOF Modify CAD shape by changing parameters Identify a collection of faces (features), & Move them using a vector or a normal

Slide 5 of 45

Mesh Improvements

gate_r_to_l_10_layers_af	
chover	
Injection: Dight and	
Injection. Right end	
	Ľ v
HT CL (100)	0
Scale (100 mm)	0
7_gate_r_to_l_10_layers_AL random	
itchover	
	Ľ.,
SHT	X
Scale (100 mm)	(
Slide 6 of 45	

New 3D Mesher

More smooth near edges and corners

Shear rate Time = 5.041[s]

0

0

Slide 7 of 45

Multi-barrel Injection Molding Simulation

Master Barrel with 4 sub-barrel

Delay time 0.25 s and 0.5 s for sub3 and sub 4, respectively

b Barrel3

RTM and SRIM in 3D

Features

Apply a dry fiber mat properties where needed. Anisotropic permeability follow the shape of the product. Detect areas where resin cannot penetrate. Include Vacuum pressure & Gravity.

Results

Degree of Cure, Volumetric shrinkage, Mat orientation, etc.

Slide 9 of 45

Improved 3D Fiber Orientation

Measured data provided by BASF BASF PA 30%GF

Slide 10 of 45

Validation

Average error of predictions for different releases and constitutive models. Results for the default models are in **bold**

AMI release	Constitutive model	BASF	Bradford	Delphi	DSM	EMS	Mechanical Plaque
Number of cases		1	2	23	1	1	1
Number of locat	tions for each case	9	3	3	6	1	1
2017FCS	F-T	0.16	0.20	0.14	0.11	0.23	0.17
	RSC	0.11	0.12	0.11	0.089	0.16	0.14
	F-T	0.091	0.16	0.11	0.079	0.16	0.13
2017 R2	RSC	0.076	0.11	0.10	0.077	0.14	0.10
	MRD	0.071	0.11	0.08	0.054	0.12	0.085

2017 R2 halves the average error of fiber orientation predictions

Slide 11 of 45

3D Residual Stress

Molded-in residual stress prediction

Experimental data using layer removal method from W.F.Zoetelief, L.F.Douven, and A.J. Ingen Housz. Polymer Engineering and Science, 36(14), 1886-1896

Slide 12 of 45

Mesh Aggregation for Isolating Cause of Warpage

Combining the two helps users make product design decisions in a shorter time

No mesh aggregation

Mesh aggregation

al ect	Diff. cooling	Diff. shr.	Orient. eff.	Time (s)
671	0.1993	0.5762	0.1967	1037
631	0.1963	0.5787	0.1975	238

Slide 13 of 45

Solver API - Solidification

You can now consider cooling rate and pressure effects on Solidification

Fig. 9. Influence of cooling rate an the specific volume of i-PP at a pressure of 40 MPa. Average cooling rates during crystallization are given in the figure

van der Beek et. al. Inter. Polymer Processing, 20, 111-120, (2005).

Slide 14 of 45

New Features for Recent Releases

Autodesk Moldflow Simulation 2017 R2

- 1. Wall Slip
- 2. Resin transfer molding
- Thermocouple-controlled cooling 3.
- Heater wattage specification for heater element

Autodesk Moldflow Simulation 2017 R3

- 5. CAD meshing support for Linux
- 6. Synergy Support for Delete CAD bodies
- 7. Synergy Support for Copy of CAD bodies
- 8. Support the exporting of STEP files
- 9. Powder injection molding support

Autodesk Moldflow Simulation 2018.0

- 10. Multi-step large vector deformation support (modelling)
- 11. Multistage support for normal deformations (modelling)
- 12. User defined initial strain support for Anisotropic inserts (Warp)
- 13. Preconditioning analysis for reactive compression molding
- 14. Injection compression overmolding (3D)

Slide 15 of 45

Research

Disclaimer

We may make statements regarding planned or future development efforts for our existing or new products and services. These statements are not intended to be a promise or guarantee of future delivery of products, services or features but merely reflect our current plans, which may change. Purchasing decisions should not be made based upon reliance on these statements.

The Company assumes no obligation to update these forward-looking statements to reflect events that occur or circumstances that exist or change after the date on which they were made.

Slide 17 of 45

Centerline Extraction for CAD Cooling System

Extracting Center Lines of CAD Cooling System

Slide 18 of 45

Invisible Meshing

Mesh

Remove all manual steps Optimize default settings Tolerate or fix defects

Solver

Accommodate new mesh without loss of accuracy or speed

Slide 19 of 45

Adaptive Meshing

Start analyses with coarse meshes Refine meshes based on analysis results Re-run analysis with refined meshes

Slide 20 of 45

Velocity

Slide 21 of 45

Including Wall Slip for PIM

Failed to predict initial jetting without Wall Slip

With Wall Slip, predicted initial jetting in PIM simulation, which matched reality better

itical shear stress	0.01 MPa
Slip exponent	1
stant sip coefficient	1.0e-05
erature dependency	0
ssure dependency	0

Slide 22 of 45

Underflow Diagnostic Plot

"Underflow severity" as a result

Adaptive Fiber Model Orientation Prediction

Skin Orientation

Shell Orientation ARD *b*_i, MRD *D*_i

Core Orientation

on flow near gate Width Controlled RSC factor κ

Believed to be due to fountain flow

Strong alignment in flow direction Alignment controlled by fiber interactions, C₁,

- Transverse or random orientation dependent

Slide 24 of 45

Fiber Concentration

Higher concentration at core while lower concentration at shear region. Fiber concentration, orientation, & breakage affect mechanical properties.

Measured data: G.M. Vélez-García, Compos. Part A-Appl. Vol 43: 104-113 (2012)

Slide 25 of 45

Warp Accuracy: Thickness Shrinkage for Warpage

Warp Accuracy - Shrinkage Correlation

SN6786 (POM) Parallel Shrinkage

Slide 27 of 45

Warp Accuracy - Machine Learning (ML) for Shrinkage Correction

Experiment Mo CRIMS Machine Learning CRIMS

Slide 28 of 45

Warp Accuracy - Anisotropic Thermo-Viscoelastic Stress Model

Stress relaxation (viscoelastic) Long cooling time effect In-mold shrinkage Liquid portion at ejection Solidification sequence effect

40.0 STRESS_22 (MPa) 20.0 10.0 -10.0-20.0 -30.0 -40.0

Slide 29 of 45

Ejection Force

Automatic Detecting based on ejectors movement direction

Jser check, add or remove surface lements manually

Deflection, ejection force Scale Factor = 10.00

Mold Fatigue

Calculate the mold life and approximated range of cycles.

Slide 31 of 45

Topology Optimization for Part Design – Joe Zuo

Improving existing design for structural performance, & light weighting

Slide 32 of 45

Network Only Analysis - Clinton Kietzmann

Features: Minor Loss, Friction formula, Simulate energy equation, & Simulate gravity New results: K factor, & Friction factor

+ Inlet node 	Flowrate in/out (m^3/sec)	Reynolds No. range	Press. drop over circuit (Pa)	Pumping power over circuit (W)		
111678 111673	0.00 0.00	1139.1 - 1277 10000.0 - 1000	7.5 1.6316e+05 0.0 3.3070e+05	390.130 498.384		
Coolant Temperatures Inlet Coolant temp. Coolant temp rise. Heat removal node range over circuit over circuit						
111678 298.1 - 298.4 Ø.2 K(d) 1803.458 W 111673 298.1 - 298.6 Ø.5 K(d) 2389.283 W						
Execution time Analysis commenced at Fri Apr 7 11:52:36 2017 Analysis completed at Fri Apr 7 11:52:37 2017 CPU time used 0.10 s Elapsed wall clock time 1.00 s						

K factor = 13.55

Friction factor = 0.0562

Circuit flow rate = 143.5[lit/min]

Slide 33 of 45

Long Carbon Fiber Thermoplastic: Fiber Length

Prediction of fiber orientation and breakage during injection molding of "long" carbon fiber thermoplastics

Comparison of measured and predicted fiber length distribution

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Slide 34 of 45

Fiber Breakage in Barrel

Prediction of long fiber breakage during melting in injection barrel

Aim: Initial fiber length distribution for polymer at the sprue tip

Slide 35 of 45

Yokoi Injection Molding Consortium

Fiber breakage in barrel Observing Fountain Flow Oscillation (Tiger Stripe) Flow Imbalance (Race-Track)

Slide 36 of 45

Filler Effect on Viscosity - RMIT

Model the change in viscosity due to filler migration, fiber orientation and fiber breakage

Slide 37 of 45

Composite Overmolding

Model non-recoverable deformation and resistance of a continuous fiber composite (pre-preg) being compression overmolded

Slide 38 of 45

Microcellular Injection Molding

Bubble effects on fiber orientation

t= 6.8 s

Bubble nucleation or growth and the final foam structure (Microcellular Plastics Manufacturing Lab, Univ. Toronto)

t= 25.9 s

t= 9.4 s

Slide 39 of 45

Injection Overmolding on Continuous Fibers Composites

Interfaces AniForm draping solution to Moldflow Warp analysis of the combined structure Models bond strength

Chopped Carbon Fiber Compression

US DOE funding to develop ICME for carbon fiber draped and compression molded parts (Automotive)

Autodesk Moldflow was invited to provide process modeling of Compression molding, Fiber Orientation, & Local fiber volume fraction

Surface Appearance (Tiger Stripes)

Flow instability mechanism understood. Potential collaboration to study appearance factors (aimed at Automotive parts)

Slide 42 of 45

Academic Research Collaborations

University of Bradford (UK)

Long Fiber Orientations, & Fiber breakage in barrel

Tokyo University

Fiber breakage visualization, & Race track visualization

RMIT University (Australia)

Effect of fiber and filler migration to change viscosity, & Thermal stresses in SLM 3D Printed parts

Huazhong University of Science and Tech

Compression Overmolding of Continuous Fiber Composites

University of Toronto

Microcellular bubble formation

University of Wyoming

Progressive failure of composites

Slide 43 of 45

Industry Research Partnerships

Long Carbon Fiber Thermoplastics (Injection Molded) Pacific Northwest National Labs, & GM

Chopped Carbon Fiber Thermoset (Compression Molded) Ford, Dow, Northwestern University

Microcellular

Trexel, University of Toronto, & Ford

Thermoplastic Composite Overmolding TPRC (The Netherlands), Boeing, Fokker, Johnson Controls, Victrex

Slide 44 of 45

AUTODESK_® Make anything.

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

