

#### Moldflow Summit 2017

#### Prediction of Cycle Times for Rapid Cycle Molding Applications

Kip Petrykowski

Director of National Sales – Dynamic-Temp Cycling & Composites

\Lambda AUTODESK.



- Historical approach
- New Approach
- Equipment
- Theoretical Heating Curves
- Mold Design
- Conclusion





#### **Historical Approach**

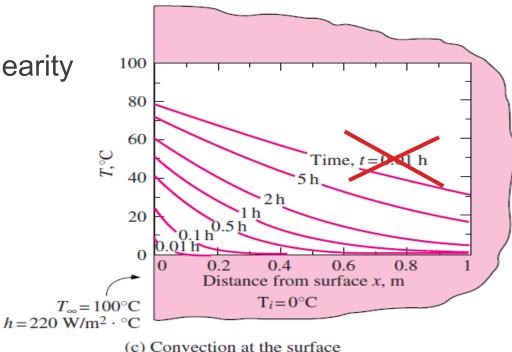




#### [(Mass<sub>Mold</sub>)(C<sub>pMold</sub>)(Mold Temp<sub>final</sub> – Mold Temp<sub>initial</sub>)/t]

- Many mold heating equipment manufacturers attempt to size equipment for rapid cycling with the above formula.
- [(250kg)(.47kJ/kg-C)(200°C-25°C)]/60sec = 342kw WOW!

When does this formula work reasonably well? Systems with heating/cooling rates <u>less than 2°C/min.</u>




- How does this apply to forced convection heating of molds? It doesn't!
- How does this apply to rapid cycling molds? **It doesn't!**
- What happens when it is used for these applications?
  Nothing good! Failed customer trials.
- Why? The formula doesn't capture the non-linear nature of heat transfer.
- Is there a better formula? Yes, sort of!



## Actual heating curves of cast iron block with forced convection

 Reduced time <u>increases</u> non-linearity of heat transfer

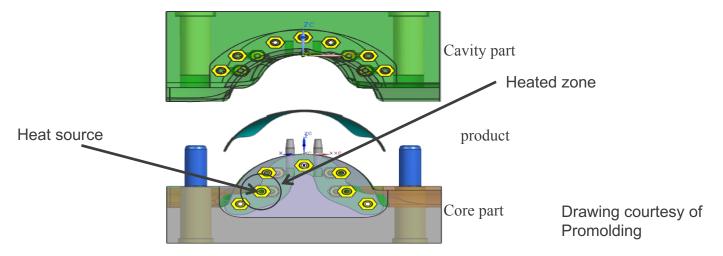


McGraw-Hill, 4th edition





### **New Approach**






### $$\begin{split} T(@x,t) &= (erfc[x/2{(\alpha)(t)}^{1/2}] - exp[(h)(x)/k + (h)^2(\alpha)(t)/k^2][erfc[x/2{(\alpha)(t)}^{1/2} + h{(\alpha)(t)}^{1/2}/k])*(T_{Fluid}-T_i))+T_i \end{split}$$

What is the formula determining?

<u>Temperature of the mold</u> at a known (circular) distance away from the heat source at a known time.





#### Limitations

• We are only determining the contribution of (1) fluid passage to the total temperature rise of the mold.

Passages at different depths are not usually considered.

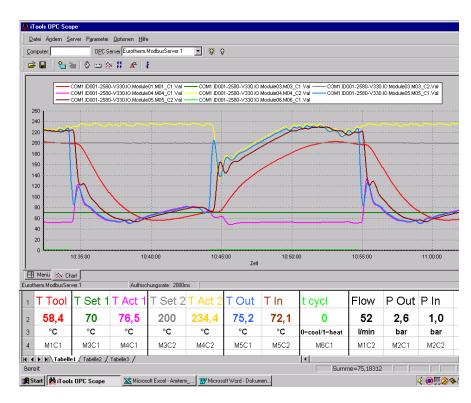




#### Equipment






#### **Pressurized Water or Oil Mold Heaters**



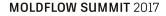
MOLDFLOW SUMMIT 2017



#### **Actual Heating Curves**



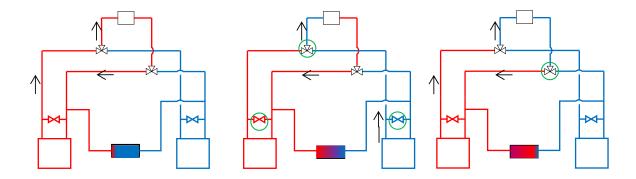


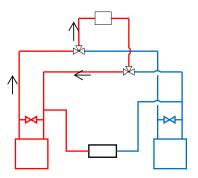


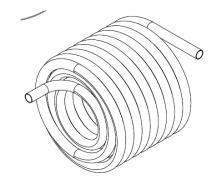

#### **Limitations of equipment**

 Theoretical math requires constant supply temperature.

 Actual system can only provide constant supply temperature for up to 30 seconds.


 How to overcome? Parking/storing return fluid for re-use.




#### **Energy Battery**

Energy Battery 2-4 liters









How does this effect temperature rise at mold surface?

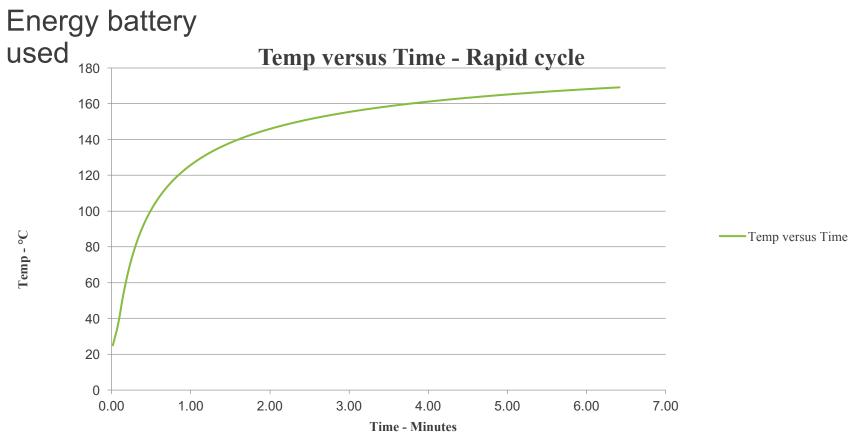
### Greatly improves it by raising the average fluid temperature.





#### **Theoretical Heating Curves**






#### **Rate Predictions**

| Cp <sub>tool</sub> = specific heat at temperature 0.460 kJ/kg-C                                                                                                               |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| k <sub>tool</sub> = thermal conductivity at temperature 27.0W/m*C                                                                                                             |   |
| $\alpha = k_{tool} / (\rho_{tool}) (Cp_{tool}) \qquad 0.000008  \text{m}^2/\text{sec}$                                                                                        | 1 |
| Heating                                                                                                                                                                       |   |
| Rapid Cycle Calcs                                                                                                                                                             |   |
| FLOW RATE THROUGH TOOL 45.0 Liters/min.                                                                                                                                       |   |
| $T_i = Tool starting temperature 25°C$                                                                                                                                        |   |
| T <sub>Fluid</sub> = Fluid temperature 200 °C (Constant tank temp)                                                                                                            |   |
| UNIT + TANK FLUID VOLUME 41                                                                                                                                                   |   |
| Time to empty tank = (System volume)/Pump flow 9sec                                                                                                                           |   |
| TOTAL FLUID VOLUME 71                                                                                                                                                         |   |
|                                                                                                                                                                               |   |
| x = total distance in tool from heat source 0.013 m                                                                                                                           |   |
| t = Time to heat tool <sup>15</sup> sec                                                                                                                                       |   |
| $T(@f,t) = (erfc[(x)/(2){(\alpha)(t)}^{1/2}] - exp[(h)(x)/(k) + (h)^{2}(\alpha)(t)/k^{2}][erfc[(x)/(2){(\alpha)(t)}^{1/2} + (h){(\alpha)(t)}^{1/2}/k])*(T_{Fluid}-Ti))+T_{i}$ |   |
| Rate 191.631 °C/min.                                                                                                                                                          |   |

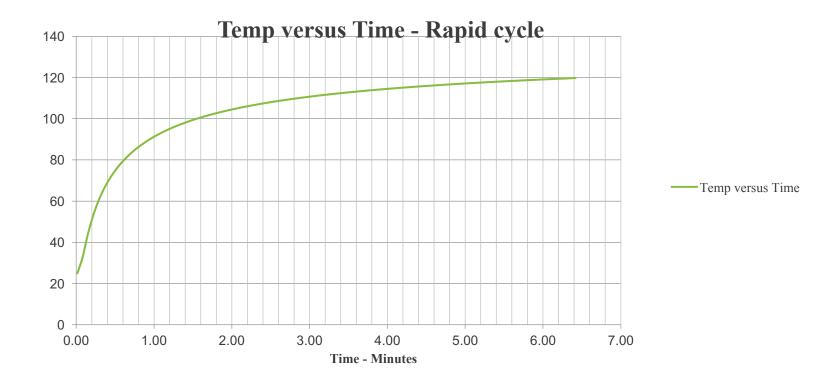


#### Curves





#### **Rate Predictions**


#### No Energy Battery

| Tool                                                                                                                                                                                                                         |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Cp <sub>tool</sub> = specific heat at temperature                                                                                                                                                                            | 0.460kJ/kg-C               |
| k <sub>tool</sub> = thermal conductivity at temperature                                                                                                                                                                      | 27.0W/m*C                  |
| $\alpha = k_{tool} / (\rho_{tool}) (Cp_{tool})$                                                                                                                                                                              | 0.000008m²/sec             |
| Heating                                                                                                                                                                                                                      |                            |
|                                                                                                                                                                                                                              | Rapid Cycle Calcs          |
| FLOW RATE THROUGH TOOL                                                                                                                                                                                                       | 45.0Liters/min.            |
| T <sub>i</sub> = Tool starting temperature                                                                                                                                                                                   | 25°C                       |
| T <sub>Fluid</sub> = Fluid temperature                                                                                                                                                                                       | 140°C (Constant tank temp) |
| UNIT + TANK FLUID VOLUME                                                                                                                                                                                                     | 41                         |
| Time to empty tank = (System volume)/Pump flow                                                                                                                                                                               | 9sec                       |
| TOTAL FLUID VOLUME                                                                                                                                                                                                           | 71                         |
|                                                                                                                                                                                                                              |                            |
| x = total distance in tool from heat source                                                                                                                                                                                  |                            |
| t = Time to heat tool                                                                                                                                                                                                        | 15 <sub>sec</sub>          |
| $T(@f,t) = (erfc[(x)/(2){(\alpha)(t)}^{1/2}] - exp[(h)(x)/(k) + (h)^{2}(\alpha)(t)/k^{2}][erfc[(x)/(2){(\alpha)(t)}^{1/2} + (h){(\alpha)(t)}^{1/2}/k])^{*}(T_{Fluid}-Ti)) + T_{i}(a)(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)$ | 56.48 c                    |
| Rate                                                                                                                                                                                                                         | 125.929°C/min.             |
|                                                                                                                                                                                                                              |                            |



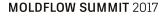
#### **Curves**

#### No energy battery



Temp - °C




#### **Mold Design**

Is it important?

# The most important part of rapid cycling that is not <u>under the control</u> of the mold heater manufacturer.

Why?

From earlier formula we see that the depth to the heat source from the part surface is compounded by <u>erfc function</u>.





#### Mold Design

What do mold makers like?

#### 16mm diameter or larger straight gun drilled passages at 25mm down from the part surface and 60mm apart.

Why?

If the drill "walks" they have plenty of material above to ensure no break out, larger drills walk less, and more material reduces the chances of mold cracks developing in those areas.



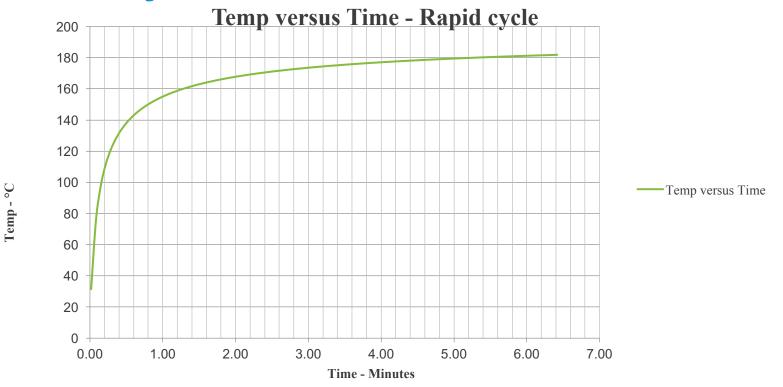
#### **Mold Design**

What does rapid cycling require?

8mm diameter conformal passages at 8mm down from the part surface and 12mm apart.

Why?

From earlier formula it can be seen that reducing the depth from heat source to part surface has a non-linear effect on heating rate (ie: it's a lot faster!)




## **Energy Battery with depth from part surface reduced by 50%**

| Tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Cp <sub>tool</sub> = specific heat at temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.460 kJ/kg-C               |  |
| k <sub>tool</sub> = thermal conductivity at temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.0W/m*C                   |  |
| $\alpha = k_{tool} / (\rho_{tool})(Cp_{tool})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000008m <sup>2</sup> /sec |  |
| Heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rapid Cycle Calcs           |  |
| FLOW RATE THROUGH TOOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.0 Liters/min.            |  |
| T <sub>i</sub> = Tool starting temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25°C                        |  |
| T <sub>Fluid</sub> = Fluid temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200°C (Constant tank temp)  |  |
| UNIT + TANK FLUID VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                          |  |
| Time to empty tank = (System volume)/Pump flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9sec                        |  |
| TOTAL FLUID VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |  |
| x = total distance in tool from heat source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |  |
| t = Time to heat tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 <sub>sec</sub>           |  |
| $T(@f,t) = (erfc[(x)/(2){(\alpha)(t)}^{1/2}] - exp[(h)(x)/(k) + (h)^{2}(\alpha)(t)/k^{2}][erfc[(x)/(2){(\alpha)(t)}^{1/2} + (h){(\alpha)(t)}^{1/2}/k])^{*}(T_{Fluid}-Ti)) + T_{i}(x) + T$ | 116.44°C                    |  |
| Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 365.760°C/min.              |  |



### **Energy Battery with depth from part surface reduced by 50%**

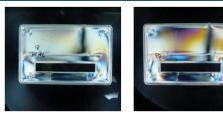


MOLDFLOW SUMMIT 2017

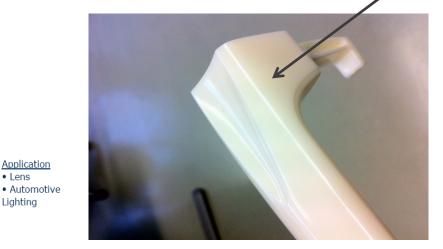


#### Conclusion

Rapid cycling can eliminate many defects during molding amorphous polymer parts. Sinks, weld lines, blemishes, exposed fiber, birefringence, etc.


> Application Lens

Lighting


Heat and Cool – Reduced Molded-in-Stress

Material: Lexan LS2 Resin (Solvent: CCL₄)

|                  | Mold Temp | As Molded | Annealed     |
|------------------|-----------|-----------|--------------|
|                  | (deg C)   |           | 2 hrs (120C) |
| Heat and<br>Cool | 70-140C   | No crack  | No crack     |
| Conventional     | 60C       | Crack     | No crack     |
| Conventional     | 90C       | Crack     | No crack     |



Annealing not required after molding with Heat and Cool



Thick walled part without sink.





#### Conclusion

What currently limits its use in more applications?

The current philosophy used for mold design; which **increases cycle time.** Ok for European customers not so good for US!

Having better tools to predict cycle times will greatly increase the chance of success for more rapid cycle projects.





### Thank you!

#### Q+A's

MOLDFLOW SUMMIT 2017

