

Material Characterization

Eric Bowersox
Beaumont Advanced Processing
Lab Manager

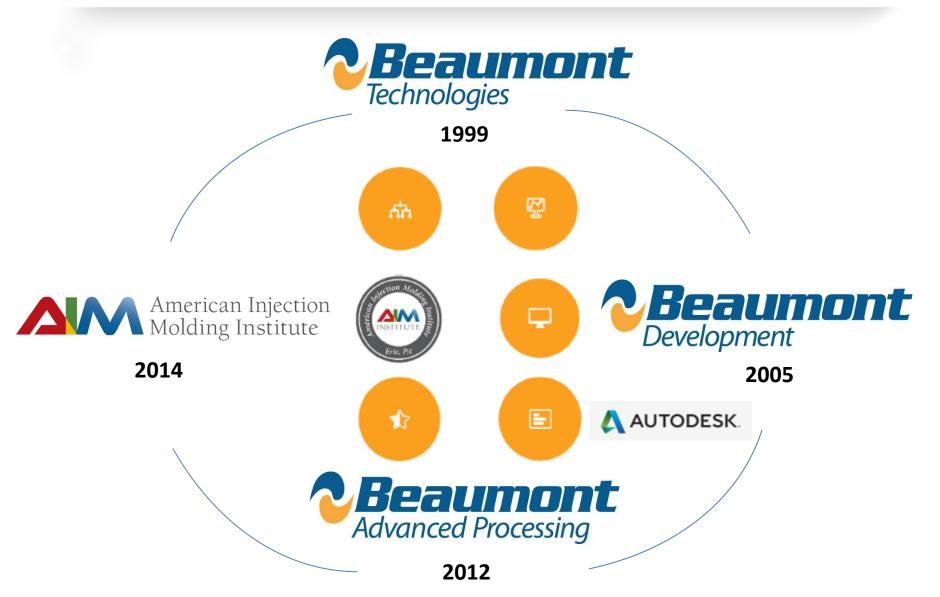
Jennifer Schmidt
AIM Institute
Autodesk® Moldflow® Instructor

Introductions

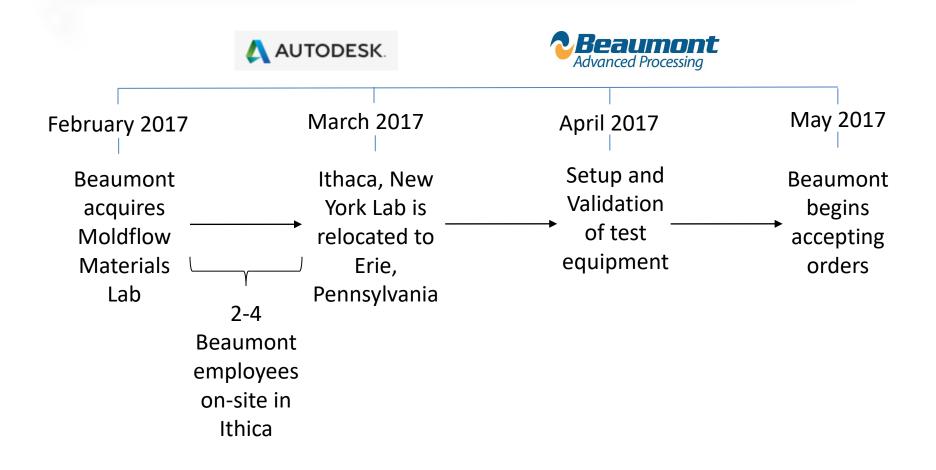
- Eric Bowersox
 - Lab Manager, Beaumont Advanced Processing
 - B.S. Degree Plastics Engineering Technology Penn State Behrend
 - 14 Years in the Plastics Industry
 - 3 Years Mold Designer
 - 11 Years Process Engineer/Trainer
- Jennifer Schmidt
 - Moldflow[®] Instructor, American Injection Molding (AIM) Institute
 - Design Engineer, Beaumont Technologies
 - B.S. Degree Plastics Engineering Technology Penn State Behrend
 - 19 Years in the Plastics Industry
 - 11 Years performing Moldflow Analyses
 - Autodesk Moldflow Expert Certified

Learning Objectives

- Why Beaumont?
 - The history behind the acquisition
- How is material characterized?
 - What tests are performed
- Where is it used in the software?
 - How the quality of material data affects accuracy


Quick Questions

- What makes Autodesk Moldflow valuable?
 - The accuracy of the simulation
- What makes Autodesk Moldflow accurate?
 - The user
 - The software
 - Material characterization
- What makes material characterization accurate?


Beaumont History

Acquisition Timeline

Beaumont Advanced Processing Lab

- What makes material characterization accurate?
 - Testing equipment
 - Testing procedures
 - Trained technicians
- 80% of all testing utilizes molded specimens
 - Moisture content when molding
 - Residence time
 - Actual melt temperature
 - Combined effects on material degradation
- Without properly manufactured test specimens

Beaumont Advanced Processing Lab

- Current testing offered:
 - Thermal Expansion (CTE): Longitudinal and Transverse
 - Specific Heat (Cp): Transition and Ejection temperatures
 - Shrinkage Correlation (Corrected residual in mold stress CRIMS)
 - Mold Verification
 - PVT
 - Melt and Solid Density
 - Viscosity: IMR and Capillary
 - Pressure Dependent Viscosity
 - Mechanicals: Tensile Modulus and Poisson's Ratio

Viscosity- IMR

Equipment- Arburg Allrounder 270s

Viscosity- IMR

- Additional values captured during IMR testing
 - Juncture Loss
 - Extensional Viscosity

Viscosity- Capillary Rheometer

Test Standard- ASTM D3835 Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer

Capillary Vs. IMR Viscosity Testing

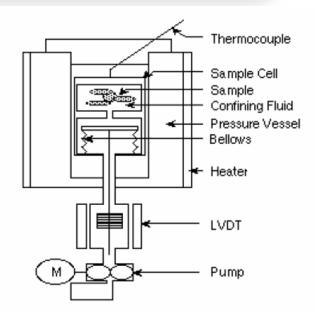
- Capillary rheology
- Pros:
 - Most widely available
 - Good reproducibility on most polymers
 - Standardized (ASTM D-3835)
- Cons:
 - No shear or pressure during plastication
 - Long dwell times (5-6 minutes)
 prior to testing
 - Long test times (1 4 minutes)
 - May not represent in-mold polymer behavior
 - Does not test long fibers accurately

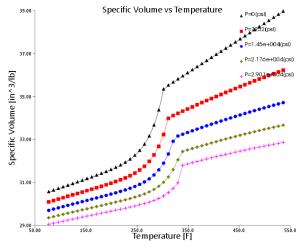
IM rheology

• Pros:

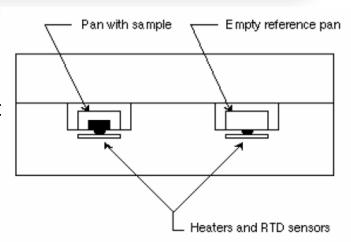
- Plastication similar or identical to injection molding process
- Plastication quickly through shear and pressure, also better mixing
- Higher shear rates 60,000 reciprocal sec
- Short dwell (residence) times (0.5 2 min.)
- Short test times (<< 1 minute)

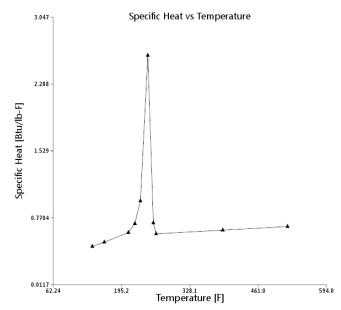
Cons:


- Temperature transient prior to test start
- Requires more material
- Long fiber breakage due to screw

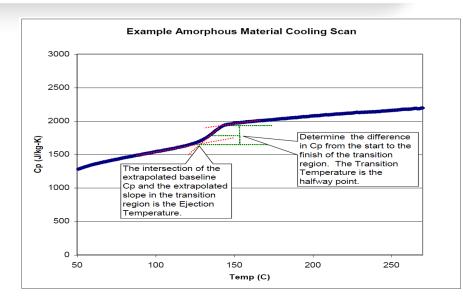

Melt & Solid Density

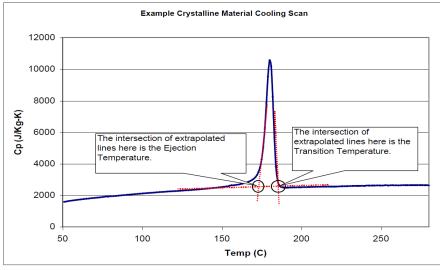
Equipment- Gnomix PVT Apparatus




Specific Heat

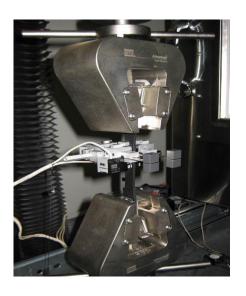
- Equipment- Diamond DSC
- Test Standards-
 - ASTM E1269 Determination of Specific Heat Capacity by DSC

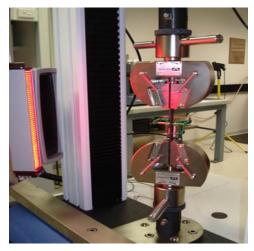

Transition and Ejection Temperatures



Equipment- Diamond DSC **Test Standards-**

ASTM D3418 Transition Temperatures of Polymers by Differential Scanning Calorimetry





Tensile Modulus and Poisson's Ratio

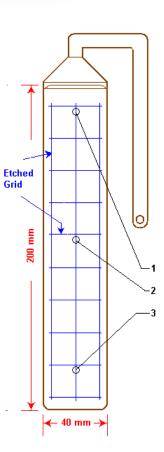
- Equipment- MTS Sintech 5/G
- Test Standards-
 - ASTM D638 Standard Test Method for Tensile Properties of Plastics
 - ASTM E132 Standard Test Method for Poisson's Ratio at Room Temperature



Coefficient of Linear Thermal Expansion

Test Standards-

- ASTM D696 Coefficient of Linear Thermal Expansion of Plastics
- ISO-11359 Measurement of Conductive Liquid Flow in Closed Conduits


Shrinkage

• Equipment- Krauss Maffei KM 160-1000CX; OGP Flash 400

Mold Verification

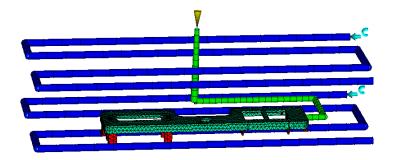
Equipment- Krauss Maffei KM 160-1000CX

Pressure Dependent Viscosity

D3 term in Moldflow

Factors that Affects Accuracy

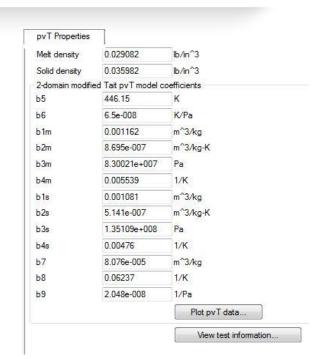
Solver Technology


$$\begin{split} &u_{t+at} = u_t + \dot{u}_t \Delta t + \left[\left(\frac{1}{2} - \alpha \right) \ddot{u}_t + \alpha \ddot{u}_{t+at} \right] \Delta t^2 \\ &\Leftrightarrow u_{t+at} - u_t + \dot{u}_t \Delta t - \left(\frac{1}{2} - \alpha \right) \ddot{u}_t \Delta t^2 = \alpha \ddot{u}_{t+at} \Delta t^2 \\ &\Leftrightarrow \ddot{u}_{t+at} = \frac{u_{t+at} - u_t}{\alpha \Delta t^2} - \frac{\dot{u}_t}{\alpha \Delta t} - \left(\frac{1/2 - \alpha}{\alpha} \right) \ddot{u}_t \\ &\text{mit } a_0 = \frac{1}{\alpha \Delta t^2}; \quad a_2 = \frac{1}{\alpha \Delta t}; \quad a_3 = \frac{1}{2\alpha} - 1 \\ \ddot{u}_{t+at} = a_0 \left(u_{t+at} - u_t \right) - a_2 \dot{u}_t - a_3 \ddot{u}_t \end{split}$$

Component Modeling

Material Data

Process Conditions



Material Properties

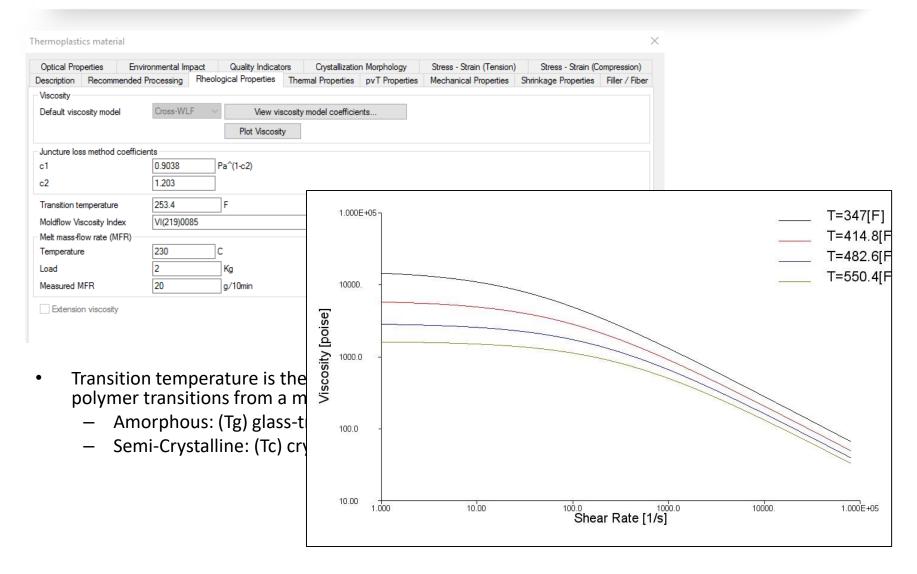
- Material Characterization
 - When was it tested?
 - Material formulations may have changed
 - What data is available?
 - Bronze, silver, gold (Autodesk Moldflow)
 - Indicates level of characterization
 - Data (Moldflow .udb file)
 - PVT
 - Melt density
 - Thermal conductivity
 - Specific heat
 - Transition temperatures
 - Etc...

Mechanical properties data		
Elastic modulus, 1st principal direction (E1)	289065	psi
Elastic modulus, 2nd principal direction (E2)	263103	psi
Poissons ratio (v12)	0.381	
Poissons ratio (v23)	0.466	
Shear modulus (G12)	97757	psi
Transversely isotropic coefficient of thermal expans	sion (CTE) data	
Alpha1	3.511e-005	1/1
Alpha2	3.928e-005	1/1

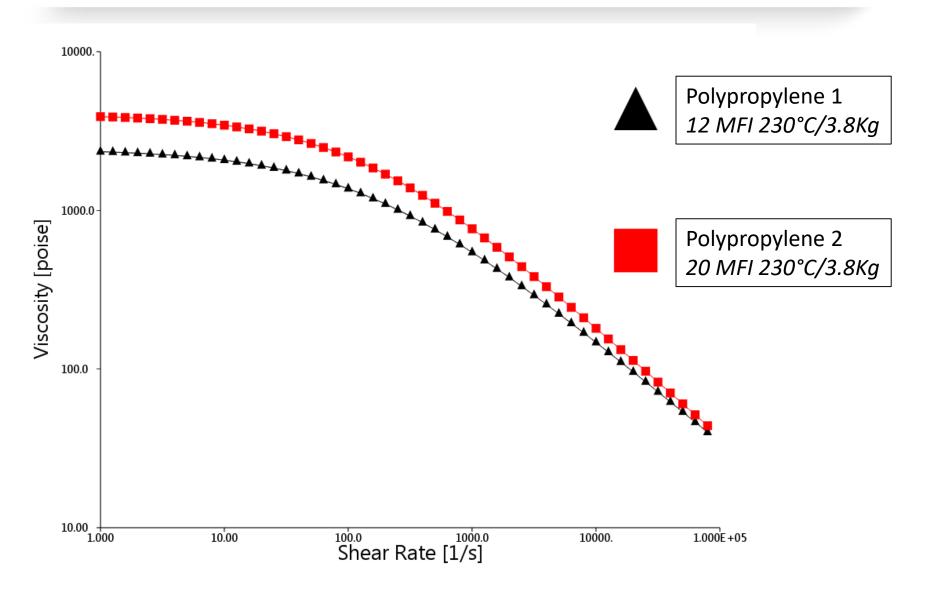
Description

Optical Pro	perties	Environmental Im	pact	Quality Indicators Crystallization Morphology		Stress -	Stress - Strain (Tension)		Stress - Strain (Compression)			
Description	Recomm	ended Processing	Rheologic	cal Properties	Thema	l Properties	pvT Properties	Mechan	nical Properties	Shrinl	cage Properties	Filler / Fibe
Family name	е	-F 2- P	-	de								
Trade name)	TU 7" 6	The 1"	de					Filling quality in	dicator		
Manufactur	er	TU 100	-	de					Gold	V	View details	
Link									Packing quality	, india		
Family abbr	eviation	PP							Gold Gold	y iriuica	View details	
Material stru	ıcture	Crystalline							- Warpage quali	tu india		
Data source	∍	Moldflow Plastic	s Labs : pv	T-Measured : m	nech-Supp	plemental			Gold Gold	ty indic	View details	
Date last m	odified	16-MAR-09							dola	-	view details	
Date tested	\	27-FEB-09										
Data status	\	Non-Confidentia	I									
Material ID	\	-V 7-4-V 7-4										
Grade code	. \	TV PATV PA										
Supplier co	de	TU PATU PA										
Fibers/fillers		Unfilled										

Moldflow Plastics Labs: pvT-Measured: mech-Supplemental


Processing

hermoplastics materi									
Optical Properties	Environmental Im	pact	Quality Indicato	rs	Crystallizatio	n Morphology	Stress - Strain (Tension)	Stress - Strain (Co	ompression)
Description Recomm	ended Processing	Rheolog	ical Properties	Thema	l Properties	pvT Properties	Mechanical Properties	Shrinkage Properties	Filler / Fibe
Mold surface temperat	ure	77	F						
Melt temperature		428	F						
Mold temperature rang	je (recommended) —								
Minimum		50	F						
Maximum		185	F						
Melt temperature rang	e (recommended)								
Minimum		347	F						
Maximum		550.4	F						
Absolute maximum me	lt temperature	604.4	F						
Ejection temperature		239	F						
				Vie	w test inform	ation for ejection t	emperature		
Maximum shear stress		36.26	psi						
Maximum shear rate		100000	1/s						


Rheological

Comparing Viscosity

Juncture Loss

- The pressure drop observed when the melt passes through contractions in the feed system
- Used in beam feed systems for MP, DD or 3D
- Helps improve pressure prediction

- If JLC are not available on your selected material
 - run the analysis with and w/o JLC using typical values
- If the analysis results show that juncture loss is significant
 - Get the material characterized for JLC

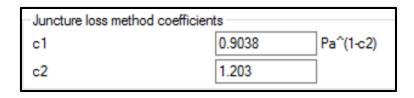
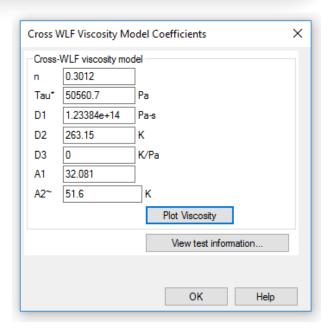


Table C-1. Bagley Constants for Juncture-Loss Calculations

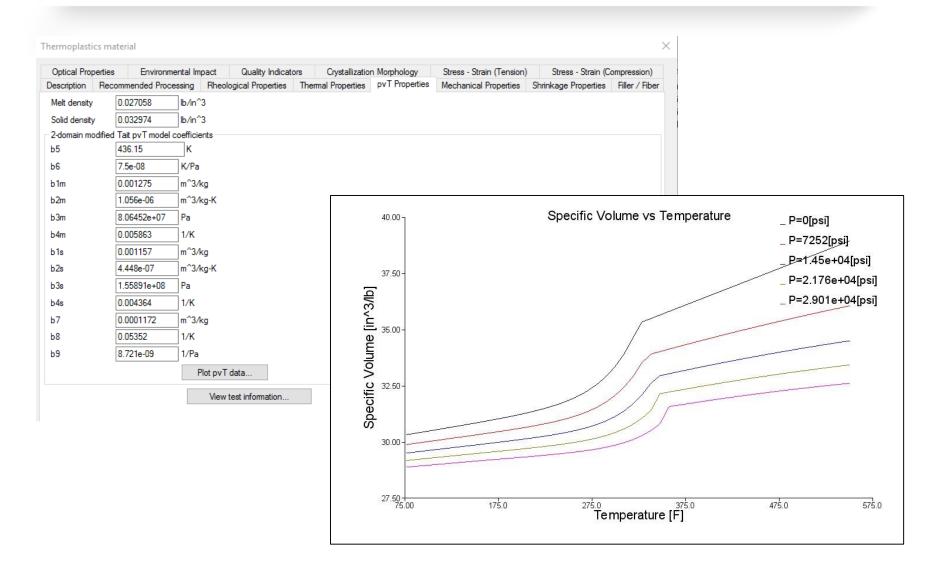
Generic Class	C1	C2
POM	2.20e-05	2.055
PE-HD	6.79e-02	1.399
LCP	1.94e+01	1.000
PE-LD	3.37e-01	1.321
PA 66	2.15e+01	1.000
PBT	2.75e-02	1.577
PC	1.15e+01	1.000
PET	8.26e+00	1.099
PP	3.60e-05	2.098
PPS	3.31e+00	1.075
PS	3.30e-05	2.108
PC ABS	5.26e+00	1.000
PBT PET	1.31e+01	1.019

Extensional Viscosity



- A measure of the resistance of a polymer to stretching forces
 - When a polymer flows through a large cross section to a smaller one, it will be stretched longitudinally, which will result in a pressure drop.
- Pressure drop due to extensional effects often occurs when a material flows from a large runner into a very small gate.
- Only used in 3D elements
- Helps improve pressure prediction
- Use when the extension rate is higher than 200 1/s
 - as the EV may significantly increase the injection pressure required

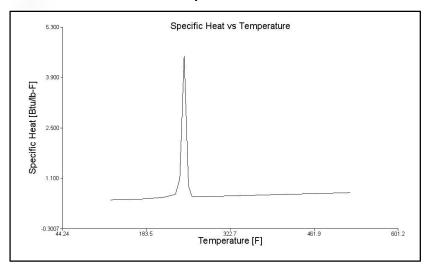
Pressure Dependence


- Typically D3 for Cross-WLF = zero
- Increases pressure prediction
- Not in the standard testing
 - Must request specific characterization

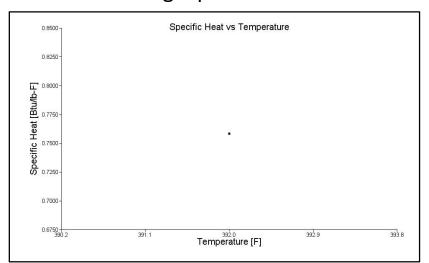
- Important for:
 - Thin wall molding, less than 2mm
 - Flow length to thickness ratios are greater than 100
 - Injection pressures are greater than 100 MPa
 - Polymers that exhibit a tendency for pressure dependence

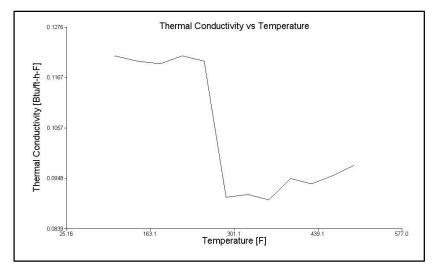
pvT

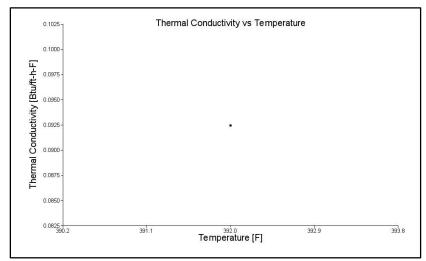
Thermal Data



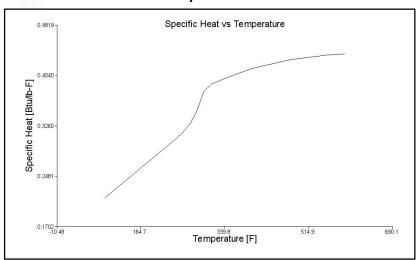
-	ical Properties	Environmental Imp	oact Quality Indica	tors Crystallizatio	n Morphology	Stress - Strain (Tension)	Stress - Strain (C	ompression)
esci	ription Recomme	ended Processing	Rheological Properties	Thermal Properties	pvT Properties	Mechanical Properties	Shrinkage Properties	Filler / Fibe
pe	cific heat data							
	Temperature (T)	Specific heat (Cp) Btu/lb-F	Heating/cooling rate F/s					
1	123.8	0.49946	-0.5999					
2	176	0.52286	-0.5999					
3	212	0.56896	-0.5999					
ı	231.8	0.65257	-0.5999					
5	239	1.0954	-0.5999					
;	246.2	4.5001	-0.5999					
7	253.4	0.89071	-0.5999					
3	258.8	0.60169	-0.5999					
)	275	0.58927	-0.5999					
0	392	0.64158	-0.5999					
1	482	0.68195	-0.5999					
12	521.6	0.70082	-0.5999					
		cific heat test informa	ition					
he	View spec mal conductivity d	ata						
he		ata Thermal conductivi		rate F/s				
	mal conductivity d	ata Thermal conductivi Btu/	ity (k) Heating/cooling					
	mal conductivity di Temperature (T)	ata Thermal conductivi Btu/	ity (k) Heating/cooling	F/s				
	mal conductivity di Temperature (T) F	ata Thermal conductivi Btu/ 0. 0.	ity (k) Heating/cooling ft-h-F	F/s 0				
2	mal conductivity di Temperature (T) F 104 141.8	ata Thermal conductivi Btu/ 0. 0. 0.	tty (k) Heating/cooling ft-h-F Heating/cooling 1213 1202	0 0				
2233	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6	ata Thermal conductivi Btu/ 0. 0. 0. 0. 0. 0.	ty (k) Heating/cooling ft-h-F 1213 1202 1196 1213 1202	0 0 0 0 0				
1 2 3 4 5	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6	ata Thermal conductivi Btu/ 0. 0. 0. 0. 0. 0. 0.	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072	F/s 0 0 0 0 0 0 0 0				
1 2 3 4 5 6 7	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6	ata Themal conductivi Btu/ 0. 0. 0. 0. 0. 0. 0. 0.0	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129	F/s 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 4 5 7 3	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8	ata Themal conductivi Btu/ 0. 0. 0. 0. 0. 0. 0. 0.0 0.0	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 4 5 6 7 8	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8 393.8	ata Themal conductivi Btu/ 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014 9476	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 4 5 6 7 3 9	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8 393.8 428	ata Themal conductivi Btu/ 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0 0.0	ity (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014 9476 9361	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 4 5 6 7 3 9	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8 393.8 428	0.000 0.0000	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014 9476 9361 9534	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 1 5 6 7 7 8 9	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8 393.8 428	0.000 0.0000	ity (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014 9476 9361	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
1 2 3 4 5 6 7 8	mal conductivity di Temperature (T) F 104 141.8 179.6 215.6 251.6 287.6 323.6 357.8 393.8 428	0.000 0.0000	ty (k) Heating/cooling 1213 1202 1196 1213 1202 9072 9129 9014 9476 9361 9534	F/s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pio	ot thermal conductivity of	ata

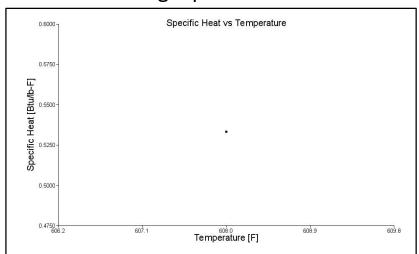

Thermal Data

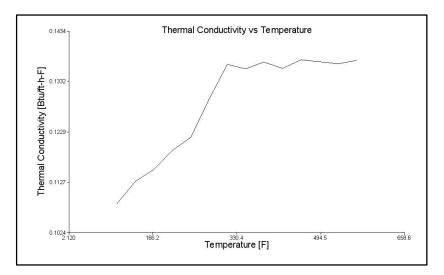


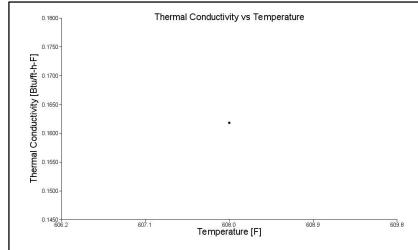

Multi point data

Single point data



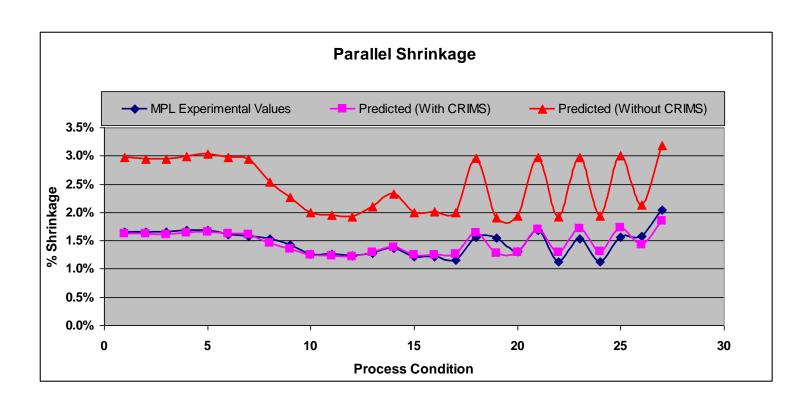

Thermal Data




Multi point data

Single point data

Shrinkage

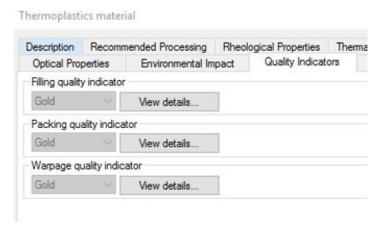


Quality Indicators				Crystallization Morphology				S	Stress - Strain (Tension)			Stress - Strain (Compression)		
Description	Recomm	nended Processin	g Rheole	ogical Properties	Themal	Properties pvT	Properties	Mechanical Pr	roperties	Shrinkage Prop	erties Filler / F	Fiber Optical Propert	ies Environmental Im	
elect a shrin	kage model (N	lidplane and Dual	Domain)											
orrected re-	sidual in-mold s	tress (CRIMS)	V Evam	ine CRIMS mod	Default Flow	/Fiher set		View mod	lel coefficients					
		, ,	Ladiii	inc crimo mod	Dordan Hon	711001 001		VICW IIIOG	or cocinocitis					
	kage model (3	D)												
Uncorrected	residual stress		~											
bserved nor	minal shrinkage													
arallel		1.393	%											
erpendicular	r	1.404	%											
Observed shr	inkage													
Minimum Para		1.239	%											
Maximum Par		1.604	%											
			-											
∕linimum Perp		1.236	%											
Maximum Per	pendicular	1.58	%											
				View observ	ed shrinkage test	information								
heinkana Me	olding Summan			VICW ODSCIV	ca si ili ikage tesi	i i i o i i di								
		-		1						f =		1	1	
Melt Te	mperature M	old Temperature	Flow Rate (R) in^3/s	Flow Rate (F) in^3/s	Ram Diameter in	Ram Displacement in	Thickness in	Packing Pressure psi	Packing Time	Cooling Time	Parallel Shrinkage	Perpendicular Shrinkage	Volumetric Shrinkage	
	'		11 3/3	111 3/3		""	"'	pai	•	"		**	*	
	442.22	91.58	1.52558	1.34861	0.98425	2.14566	0.07874	3118.36	10	20	1.33	1.42	3.2	
2	440.42	92.3	1.52558	1.34861	0.98425	2.12598	0.07874	3103.86	10		1.31	1.41	3.21	
3	440.42	95.72	1.51947	1.43404	0.98425	2.12204	0.07874	3553.48	9.9	20	1.44	1.41	3.09	
1	440.42	92.48	1.51947	1.27538	0.98425	2.12598	0.07874	3205.38	10		1.34	1.42	3.17	
5	440.42	92.84	1.51947	1.14723	0.98425	2.12598	0.07874	3263.4	10	20	1.3	1.4	3.15	
	440.42	97.52	2.30057	2.08699	0.98425	2.12598	0.07874	4090.13	9.9	20	1.38	1.33	2.92	
,	440.42	93.56	1.52558	1.27538	0.98425	2.12204	0.07874	3248.9	9.9	20	1.45	1.41	3.18	
7	440.42 440.42	93.56 91.04	1.52558 0.76889	1.27538 0.634639	0.98425 0.98425	2.12204 2.12598	0.07874 0.07874	3248.9 2987.82	9.9 9.9	20 20	1.45 1.44	1.41 1.47	3.18 3.2	
7 3	440.42 440.42 440.42	93.56 91.04 102.38	1.52558 0.76889 1.52558	1.27538 0.634639 1.20215	0.98425 0.98425 0.98425	2.12204 2.12598 2.51968	0.07874 0.07874 0.11811	3248.9 2987.82 3045.84	9.9 9.9 15	20 20 20	1.45 1.44 1.54	1.41 1.47 1.54	3.18 3.2 5.43	
0	440.42 440.42	93.56 91.04 102.38 100.04	1.52558 0.76889 1.52558 1.52558	1.27538 0.634639 1.20215 1.25097	0.98425 0.98425	2.12204 2.12598 2.51968 2.52362	0.07874 0.07874 0.11811 0.11811	3248.9 2987.82	9.9 9.9	20 20	1.45 1.44 1.54 1.51	1.41 1.47	3.18 3.2	
7 3 3) 10	440.42 440.42 440.42 440.42	93.56 91.04 102.38	1.52558 0.76889 1.52558	1.27538 0.634639 1.20215	0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968	0.07874 0.07874 0.11811	3248.9 2987.82 3045.84 3074.85	9.9 9.9 15 15	20 20 20 20	1.45 1.44 1.54	1.41 1.47 1.54 1.55	3.18 3.2 5.43 5.4	
7 3 3 10 11	440.42 440.42 440.42 440.42 440.42	93.56 91.04 102.38 100.04 101.3	1.52558 0.76889 1.52558 1.52558 1.53168	1.27538 0.634639 1.20215 1.25097 1.25097	0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968	0.07874 0.07874 0.11811 0.11811 0.11811	3248.9 2987.82 3045.84 3074.85 3118.36	9.9 9.9 15 15 14.9	20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48	1.41 1.47 1.54 1.55 1.54	3.18 3.2 5.43 5.4 5.39	
5 7 3 9 10 11 12 13	440.42 440.42 440.42 440.42 440.42 440.42	93.56 91.04 102.38 100.04 101.3 103.1	1.52558 0.76889 1.52558 1.52558 1.53168 1.52558	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37	9.9 9.9 15 15 14.9 14.9	20 20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48	1.41 1.47 1.54 1.55 1.54 1.58	3.18 3.2 5.43 5.4 5.39 5.28	
7 3 3 10 11 12 13 4 4	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86	1.52558 0.76889 1.52558 1.52558 1.53168 1.52558 1.52558 2.30667 1.52558	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 1.6049 1.25097	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86	9.9 9.9 15 15 14.9 14.9 15 15	20 20 20 20 20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47	1.41 1.47 1.54 1.55 1.54 1.58 1.5 1.54	3.18 3.2 5.4 5.39 5.28 5.39 5.29 5.29	
7 0 1 2 3 4 5	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02	1.52558 0.76889 1.52558 1.52558 1.53168 1.52558 1.52558 2.30667 1.52558 0.762788	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 1.6049 1.25097 0.646844	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 2.51968	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82	9.9 9.9 15 15 14.9 14.9 15 15 14.9	20 20 20 20 20 20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48 1.66 1.49 1.47 1.44	1.41 1.47 1.54 1.55 1.54 1.58 1.5 1.54	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03	
7 0 1 2 3 4 5 6	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 441.14	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02 82.76	1.52558 0.76889 1.52558 1.52558 1.53168 1.52558 1.52558 2.30667 1.52558 0.762788	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 1.6049 1.25097 0.646844 1.00078	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.03937	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82 5105.41	9.9 9.9 15 15 14.9 15 15 14.9 14.9 14.9	20 20 20 20 20 20 20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48	1.41 1.47 1.54 1.55 1.54 1.5 1.5 1.54 1.5 1.61	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81	
0 1 2 3 4 5 6 7	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02 82.76 84.56	1.52558 0.76889 1.52558 1.52558 1.52558 1.52558 1.52558 2.30667 1.52558 0.762788 1.53778 1.51337	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 1.6049 1.25097 0.646844 1.00078 0.915345	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.03937 0.03937	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82 5105.41 5090.9	9.9 9.9 15 15 14.9 14.9 15 14.9 14.9 4.9	20 20 20 20 20 20 20 20 20 20 20 20	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48 1.31	1.41 1.47 1.54 1.55 1.58 1.5 1.54 1.5 1.61 1.26	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81 2.82	
0 0 1 2 3 4 4 5 6 6 7 8	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.24 440.96	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02 82.76 84.56 86.72	1.52558 0.76889 1.52558 1.52558 1.53168 1.52558 2.30667 1.52558 0.762788 1.53778 1.51337	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 1.6049 1.25097 0.646844 1.00078 0.915345	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015 1.74015	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.03937 0.03937	3248.9 2997.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2997.82 5105.41 5090.9	9.9 9.9 15 14.9 14.9 15 14.9 14.9 4.9 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48 1.31 1.29	1.41 1.47 1.54 1.55 1.54 1.58 1.5 1.54 1.5 1.61 1.26	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81 2.82 2.77	
7 3 3 0 10 11 12 2 13 14 14 15 15 16 16 17 18 19 19 19 19	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.24	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02 82.76 84.56 86.72 85.28	1.52558 0.76889 1.52558 1.52558 1.52558 1.52558 2.30667 1.52558 0.762788 1.53778 1.51337 1.55609 1.51947	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 0.646844 1.00078 0.91536 1.00078	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015 1.74015 1.72047 1.73622	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.03937 0.03937 0.03937	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82 5105.41 5090, 5047.39	9.9 9.9 15 14.9 14.9 15 15 14.9 14.9 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48 1.31 1.29 1.36	1.41 1.47 1.54 1.55 1.54 1.5 1.54 1.5 1.61 1.26 1.3 1.28	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81 2.82 2.77 2.76	
7 3 9 10 11 12 23 3 14 15 5 6 6 17 7 8 9 9 9 9	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.24 440.24 440.24 440.96	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 102.02 82.76 84.56 86.72 85.28 83.12	1.52558 0.76889 1.52558 1.52558 1.52558 1.52558 1.52558 2.30667 1.52558 0.762788 1.53778 1.51337 1.55694 1.51947	1.27538 0.634639 1.20215 1.25097 1.25097 1.6554 1.25097 0.646844 1.00078 0.915345 1.00078 1.00078	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.51968 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015 1.74015 1.72047 1.73622 1.72441	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.01811 0.03937 0.03937 0.03937	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82 5105.41 5090.9 5047.39 5047.39	9.9 9.9 15 14.9 14.9 15 14.9 14.9 4.9 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48 1.31 1.29 1.36 1.33	1.41 1.47 1.54 1.55 1.54 1.5 1.5 1.5 1.61 1.26 1.3 1.28 1.29	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81 2.82 2.77 2.76 2.84	
7 3 3 0 10 11 12 2 13 14 14 15 15 16 16 17 18 19 19 19 19	440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.42 440.24	93.56 91.04 102.38 100.04 101.3 103.1 101.66 104.36 99.86 102.02 82.76 84.56 86.72 85.28	1.52558 0.76889 1.52558 1.52558 1.52558 1.52558 2.30667 1.52558 0.762788 1.53778 1.51337 1.55609 1.51947	1.27538 0.634639 1.20215 1.25097 1.25097 1.16554 1.25097 0.646844 1.00078 0.91536 1.00078	0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425 0.98425	2.12204 2.12598 2.51968 2.52362 2.51968 2.51968 2.51968 2.51968 2.51968 1.74015 1.74015 1.72047 1.73622	0.07874 0.07874 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.11811 0.03937 0.03937 0.03937	3248.9 2987.82 3045.84 3074.85 3118.36 3147.37 3118.36 3422.94 3132.86 2987.82 5105.41 5090, 5047.39	9.9 9.9 15 14.9 14.9 15 15 14.9 14.9 5 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.45 1.44 1.54 1.51 1.48 1.6 1.49 1.47 1.44 1.48 1.31 1.29 1.36	1.41 1.47 1.54 1.55 1.54 1.5 1.54 1.5 1.61 1.26 1.3 1.28	3.18 3.2 5.43 5.4 5.39 5.28 5.39 5.29 5.38 5.03 2.81 2.82 2.77 2.76	

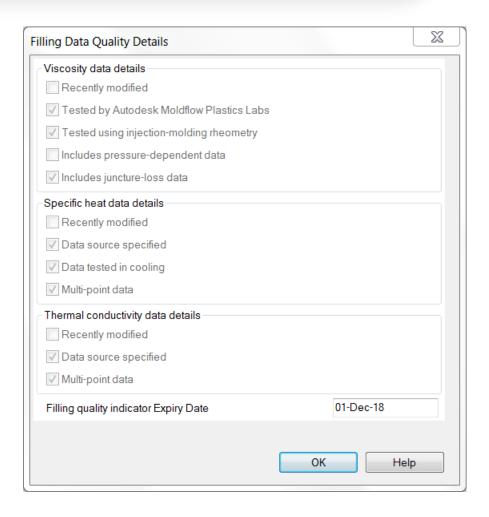
Moldflow Shrinkage Testing

- Corrected Residual In-Mold Stress coefficients (CRIMS)
 - Dual Domain and Midplane only
 - Corrects for gap between lab vs. production environment

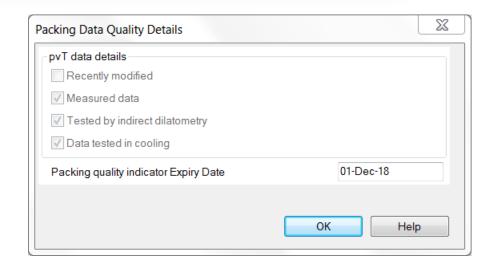
Mechanical


Optical Prop	perties Environmental Imp	pact	Quality Indicator	rs Crysta	allizatio	n Morphology	Stress - Strain (Tension)	Stress - Strain (Co	ompression)
escription	Recommended Processing	Rheolog	gical Properties	Thermal Prop	erties	pvT Properties	Mechanical Properties	Shrinkage Properties	Filler / Fibe
Mechanical	properties data				_				
Elastic modulus, 1st principal direction (E1) Elastic modulus, 2nd principal direction (E2) Poissons ratio (v12) Poissons ratio (v23)			194354		psi				
			194354	194354 0.392		psi *Su	pplemental [Data	
			0.392				hows in red text		
			0.392			31	iows iii red te	ext.	
Shear modul	Shear modulus (G12)				psi				
Transversely	sotropic coefficient of thermal	expansion	on (CTE) data						
Alpha1			5.028e-05	1/F					
Alpha2			5.028e-05	1/F					
						View test informat	ion		
Do not use	matrix properties			~					
Weld Line S	trength								
WLSC1				1/K-s					
WLSC2				1/K^2	2-s				
Phi Critical				rad					

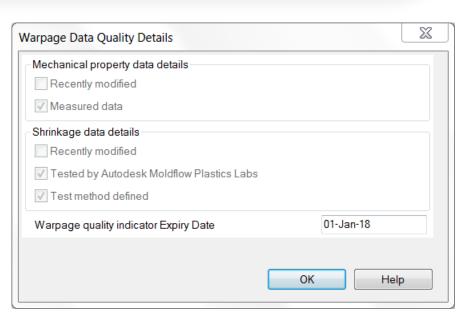
Moldflow Plastics Labs: pvT-Measured: mech-Supplemental


- MQI's are simple 3 tier descriptions of the quality of material properties (Gold, Silver, or Bronze)
- Thermoplastic materials only
- Weighted scale used

- Accurate Material Data = Accurate Simulation Results
- How data is measured matters
 - Test Methodology, Single/Multiple Point
- Source of data matters
 - Supplemental data, Tested in certified Lab
- MQI is not a static measure
 - Data quality reduces with time



Fill Quality Indicator –
 Investigates the quality of the
 Viscosity, Specific Heat Capacity
 and Thermal Conductivity data



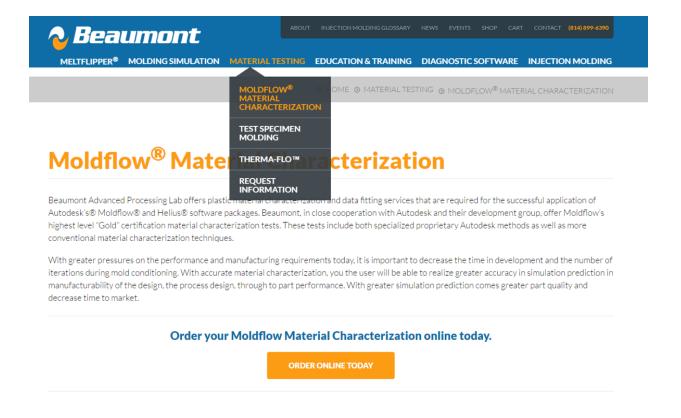
- Packing Quality Indicator –
 Incorporates the quality of the
 Fill Quality Indicator results and
 the pvT data
- The Packing and Warpage
 Quality Indicator cannot exceed
 the previous Quality Indicator

Warpage Quality Indicator —
 Incorporates the suitability of the Packing Quality Indicator along with the Mechanical Property and Shrinkage data

- Warpage requires either:
 - Mechanical data <u>or</u> Shrinkage data
- This is a mesh type specific concern for analysis.
 - DD/Midplane mesh uses shrinkage data (like CRIMS)
 - 3D mesh uses mechanical properties

MQI Ratings

- A Gold rating indicates a high confidence in the quality of the material data for the analysis type. When accurate analysis results are critical, it is recommended that a material with a Gold rating should be used.
- A Silver rating can result from a combination of well tested, and supplemental material data. For example, a material might have a Gold Packing Quality rating but use supplemental Mechanical Properties data. This could result in a Silver Warpage Quality Indicator rating.
- Bronze ratings can reflect problems such as incomplete data sets, the
 extensive use of supplemental data and untested material properties. The
 use of Bronze-rated materials can still generate good results, but these
 results should not be relied upon to determine critical requirements such
 as precise warpage or shrinkage allowances used for the cutting of molds.



- Duplicate
- Low hanging fruit
 - Ease of ordering

How do I order material characterization?

Online ordering @ www.beaumontinc.com

How do I order material characterization?

Beau	umont	ABOUT	INJECTION MOLDING GLOSSARY	NEWS	EVENTS	SHOP	CART	CONTACT	(814) 899-6390
MELTFLIPPER®	MOLDING SIMULATION	MATERIAL TESTING	EDUCATION & TRAINING	DIAG	NOSTIC:	OFTW	ARE	INJECTIO	N MOLDING

Moldflow® Material Characterization Order Form

II In Your Material						
ata Status: Not Co	onfidential O	Confidential (\$845 surcharge app	lies)			
amily Abbreviation *Requi	red		Trade Name *Required			
ot Number *Required			Manufacturer*Required			
ller 1 Status (96 and type)		Filler 2 Status (% and type)	Filler Status	5		
			O Not Cor	fidential O Confident	tial	
			O Not Cor	ifidential O Confident	tial	
ick Test"s" To Be Perfor	med	Description	O Not Cor			
Test	Paramatan sarah sarah	Description cosity by IMR. Specific heat. Thermal		Material	Price	
	Includes: Shear Vis	Description cosity by IMR, Specific heat, Thermal and mechanical data is used, unless p	Conductivity and Mold Validatio	Material		-
Test	Includes: Shear Vis Supplemental CTE	cosity by IMR, Specific heat, Thermal	Conductivity and Mold Validatio rovided by customer. Conductivity and Mold Validatio	Material 25 kg	Price	-
Test Filling (MPL-110)	Includes: Shear Vis Supplemental CTE Includes: Shear Vis Supplemental CTE Includes: pvT. Shea	cosity by IMR, Specific heat, Thermal and mechanical data is used, unless p cosity by IMR, Specific heat, Thermal	Conductivity and Mold Validatio rovided by customer. Conductivity and Mold Validatio rovided by customer. rmal Conductivity and Mold	Material 25 kg	Price \$1,550	-
Test Filling (MPL-110) Filling (MPL-110) Filling and Packing (MPL-	Includes: Shear Vis Supplemental CTE Includes: Shear Vis Supplemental CTE Includes: pvT, Shea Validation, Supplen Includes: Moldflow	cosity by IMR, Specific heat, Thermal and mechanical data is used, unless p cosity by IMR, Specific heat, Thermal and mechanical data is used, unless p r Viscosity by IMR, Specific heat, The	Conductivity and Mold Validatio rovided by customer. Conductivity and Mold Validatio rovided by customer. rmal Conductivity and Mold ed, unless provided by customer.	Material 25 kg 25 kg	Price \$1,550 \$1,550	-

How do I order material characterization?

B		nont				
MELTFLII	PPER® MOL	DING SIMULATION	THERMA-FLO™	EDUCATION & TRAINING	DIAGNOSTIC SOFTWARE	INJECTION MOLDING
Cart						
		Product		Price	Quantity	Total
×	Q	Material Tests of asdf Filling and Packing - 25	kg	\$3,045.00	1	\$3,045.00
Coupon co	Apply Coupon					Update Cart
				Cart Tota	als	
				Cart rott		
				Subtotal	\$3,045.00	

Total

Proceed to Checkout

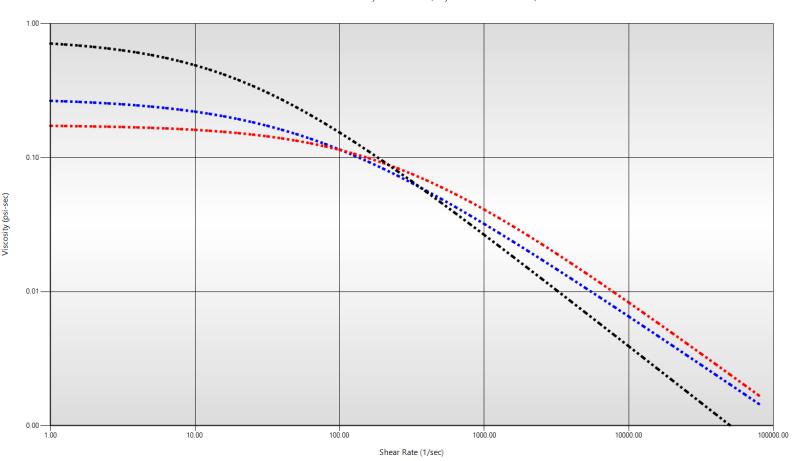
- Duplicate
- Low hanging fruit
 - Ease of ordering
 - Decrease lead times
 - Online ordering
 - Collaboration with Beaumont Advanced Processing
 - Machining of test specimens from mechanical plaques
- Future research
 - Collaboration with Australia
 - Internal research

1999

QUESTION EVERYTHING

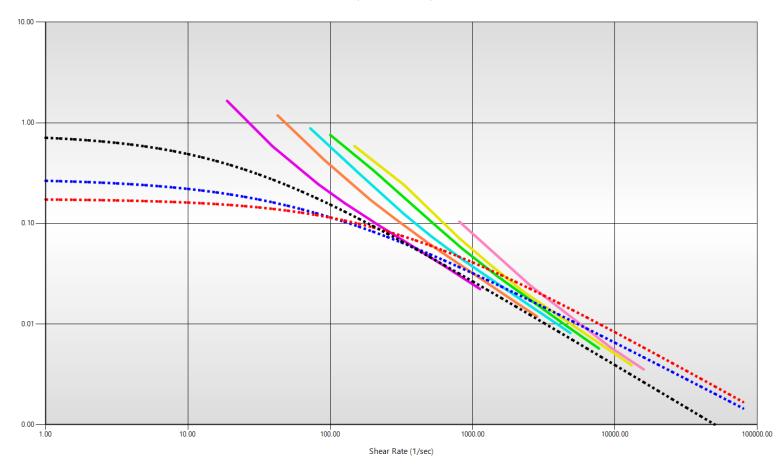
REVOLUTIONIZING Injection Molding

QUESTION EVERYTHING

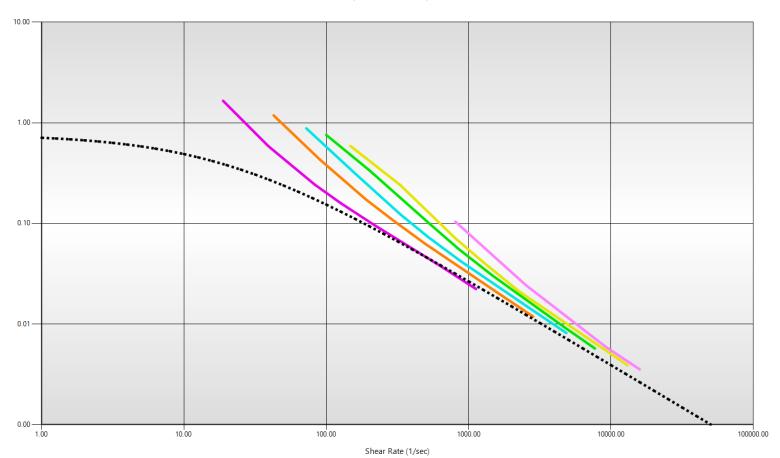


8n-2 - 473°F (Rheometer Data)

8n-3 - 476°F (Rheometer Data)


8n-1 - 467°F (Rheometer Data)

Viscosity vs. Shear Rate (Acrylite 8N 60299069 470°F)



Viscosity vs. Shear Rate (Acrylite 8N 60299069 470°F)

Viscosity vs. Shear Rate (Acrylite 8N 60299069 470°F)

Beaumont Contact info

Webpage: http://www.beaumontinc.com/material-testing/
moldflow-material-characterization/

Email: info@beaumontinc.com

Phone: 814-899-6390

Current Address: 1524 East 10th St. Erie, PA

New Address: 6100 W. Ridge Rd. Erie, PA