

Moldflow Summit 2017

Advances in Weld Line Strength Predication and As-Manufactured Structural Simulation For Plastics

Matt Jaworski

Senior Moldflow Subject Matter Expert

\Lambda AUTODESK.

Weld Line Introduction

What Is A Weld Line or Knit Line?

- Regions where separated melt fronts recombine
- Separation due to:
 - Obstacle such as a core pin
 - Geometrical features of part
 - Multiple injection locations
 - Jetting

Why Should We Care About Weld Lines?

- Product quality concerns
 - Weld lines can exhibit severe reductions in strength compared to bulk material
 - Insufficient polymer chain mixing
 - Fiber alignment

0

Image Source: PlasticsTechnology

- Aesthetic
 - Produces visible "line" on part surface
 - Perceived quality issue

Classification of Weld Lines

- Class 1 (cold or butt) weld line:
 - Separated flow fronts traveling in opposite directions meet and rapidly immobilize
 - Weaker than Class 2 due to poor bonding at interface

1

- Class 2 (hot, streaming or meld) weld line:
 - Flow front traveling in same direction separated by an obstacle or multiple gates and recombines

Meeting Angle Classification

- Meeting angle Plane included angle, θ, of meeting flow fronts
- Used in CAE software to determine severity and classification
 - $\theta < 135^\circ$ = weld line (Class 1)
 - Dashed line in image
 - $\theta > 135^{\circ}$ = meld line (Class 2)
 - Solid line in image

Primary Factors Effecting Weld Line Strength

- Poor bonding at meeting interface:
 - Dependent on process and material
 - Varies across gap thickness
 - Weak secondary polar bonds at interface
- Orientation:
 - Fountain flow orients polymer chains or fillers (fiber) perpendicular to flow direction
- V-notch (stress amplifier):
 - Compressed gases formed by meeting flow fronts
 - High viscosity or frozen skin

MOLDFLOW SUMMIT 2017

Weld Line Strength Testing

Weld line retention

$$\eta = \frac{F_w}{F_b} or \frac{\sigma_w}{\sigma_b}$$

Stress

- Tensile Testing
 - ASTM-D647
 - Notch sensitive
 - Rate & temperature dependent

$$\sigma_{max}^{weld} = \eta \sigma_{max}$$
$$0 < \eta \le 1$$

Strain

Amorphous Resin	Reinf.	%	Filler	%	η % (UTS)	Crystalline Resin	Reinf.	%	Filler	%	η % (UTS)
PC	-	-	-	-	99	PA66	-	-	-	-	97
PC	GF	10	-	-	90	PA66	GF	10	-	-	93
PC	GF	30	-	-	65	PA66	GF	30	-	-	61
PC	GF	40	-	-	55	PA66	GF	40	-	-	52
PC	-	-	Milled Gl	30	92	PA66	LGF	30	-	-	58
PC	GF	30	PTFE	15	60	PA66	CF	30	-	-	47
SAN	-	-	-	-	80	PA66		-	Glass Bd	30	95
SAN	GF	30	-	-	40	PP	-	-	-	-	86
SAN	GF	30	Flame Ret	10	45	PP	GF	30	-	-	34
PSU	-	-	-	-	100	PPS		-		-	83
PSU	GF	30	-	-	62	PPS	GF	40	-	-	20

MOLDFLOW SUMMIT 2017

Reference: Cloud et al., "Reinforced Thermoplastics: Understanding Weld-Line Integrity", Plastics Technology, 22, 48, (1976).

	/			iller	%	η % (UTS)	Crystalline Resin	Reinf.	%	Filler	%	η % (UTS)
				-	-	99	PA66	-	-	-	-	97
				•	-	90	PA66	GF	10	-	-	93
				•	-	65	PA66	GF	30	-	-	61
and the second second				•	-	55	PA66	GF	40	-	-	52
	1			led Gl	30	92	PA66	LGF	30	-	-	58
PC	GF	30		PTFE	15	60	PA66	CF	30	-	-	47
SAN	-	-		-	-	80	PA66	-	-	Glass Bd	30	95
SAN	GF	30		-	-	40	PP	-	-	-	-	86
SAN	GF	30	Fla	ame Ret	10	45	PP	GF	30	-	-	34
PSU	-	-			-	100	PPS	-	-	-	-	83
PSU	GF	30		-	-	62	PPS	GF	40	-	-	20

MOLDFLOW SUMMIT 2017

Reference: Cloud et al., "Reinforced Thermoplastics: Understanding Weld-Line Integrity", Plastics Technology, 22, 48, (1976).

	/		iller				Reinf.	%	Filler	%	η % (UTS)
1 mar 1997					·	-	-	-	97		
							GF	10	-	-	93
				•			GF	30	-	-	61
							GF	40	-	-	52
			lled C				LGF	30	-	-	58
PC	GF	30	PTFE	15	60	PA66	CF	30	-	-	47
SAN	-	-	-	-	80	PA66	-	-	Glass Bd	30	95
SAN	GF	30	-	-	40	PP	-	-	-	-	86
SAN	GF	30	Flame Ret	10	45	PP	GF	30	-	-	34
PSU	-	-	-	-	100	PPS	-	-	-	-	83
PSU	GF	30	-	-	62	PPS	GF	40	-	-	20

MOLDFLOW SUMMIT 2017

Reference: Cloud et al., "Reinforced Thermoplastics: Understanding Weld-Line Integrity", Plastics Technology, 22, 48, (1976).

As-manufactured Simulation

As-Manufactured Simulation Workflow Overview

MOLDFLOW SUMMIT 2017

Helius PFA For Plastics Overview

- Dissimilar model support
 - Geometry
 - Mesh
 - Position

Helius PFA For Plastics Overview

- Dissimilar model support
 - Geometry
 - Mesh
 - Position
- Mapping
 - Solid to Solid
 - Shell to Shell
 - Mapping suitability
 - Assemblies

Helius PFA For Plastics Overview

- Dissimilar model support
 - Geometry
 - Mesh
 - Position
- Mapping
 - Solid to Solid
 - Shell to Shell
 - Mapping suitability
 - Assemblies
- Mapped data
 - Non-linear material properties
 - Fiber orientations
 - Strain (Warpage)
 - 3D weld surface strength

Moldflow

Structural

MOLDFLOW SUMMIT 2017

Material Testing

Material Testing

- Testing offered through Autodesk Moldflow Labs and partners
- Parallel, perpendicular, 45° to flow direction
- Tension & compression data in MF database
- Many times compression data is not equivalent to inverse of tension

Material Testing – Weld Line Strength

Run (°C)

3

5

6

8

- Soon to be added material test
- Dog bone specimens molded
 - Single and dual opposing gate configurations
- Two level Taguchi DOE sample:
 - Melt temperature
 - Mold temperature
 - Injection rate
 - Pack pressure
 - Pack time
 - Cooling time
- Multiple specimens from each process mechanically loaded in tension until ultimate failure
- Data generated used to determine weld line coefficients used in material file (Mech Prop) MOLDFLOW SUMMIT 2017

(s)

(s)

AUTODESK

s se	etup	NO		5	-
220	40	40	70	2.5	35
220	40	40	40	6	45
220	20	80	70	2.5	45
220	20	80	40	6	35
200	40	80	70	6	35
200	40	80	40	2.5	45
200	20	40	70	6	45
200	20	40	40	2.5	35

Melt Temp Mold Temp Injection Rate Pack Pressure Pack Time Cool Time

(MPa)

 (cm^3/s)

(°C)

Weld Surface Strength Reduction Details

Weld Surface Strength Reduction Contributors

Two contributors to strength reduction considered:

 $\eta_T = \frac{S_W}{S} = \eta_\alpha \eta_W$

- η_{α} Fiber orientation
- η_w Weld surface

Weld Surface Reduction (Temp & Pressure)

- Moldflow simulation yields detailed information for each point on the weld surface over time
 - Temperature and pressure history

$$d\beta = \beta_{(t)} \big(c_T \big(T_{(t)} - T_g \big) + c_P P_{(t)} \big) dt$$

MOLDFLOW SUMMIT 2017

Weld Surface Reduction (Formation & Movement)

- Moldflow simulation yields detailed information for each point on the weld surface over time
 - Temperature and pressure history
 - Formation & Movement

Weld Surface Strength Reduction In Helius PFA

MOLDFLOW SUMMIT 2017

Validation Example

Dog Bone Moldflow Model

- Cool+Fill+Pack analysis performed for all eight process conditions (DOE)
- 1.5 million tetrahedral elements
- Extron 3019 HS 30% GF Polypropylene

Dog Bone Structural Model

- Abaqus/Standard
- 116,000 hexahedral elements
- Displacement control loading

Mapping Moldflow Results to FEA using Helius PFA

- Transferred results to Abaqus FEA model for all eight processing conditions
- Fiber orientations transferred for single gate specimens

Mapping Moldflow Results to FEA using Helius PFA

- Double gate specimens ran twice:
- Without weld surface strength reduction (η_α only)
- With weld surface strength reduction (η_α and η_w)

Structural Simulation Results Comparison

MOLDFLOW SUMMIT 2017

Structural Simulation Results Comparison

Viewport: 1 ODB: F:/Projects/Research/Weld..._FEA/ppgf_noweld_run7.odb

Plastic Strain

MOLDFLOW SUMMIT 2017

🔼 AUTODESK.

Summary Comparison to Experiment

Summary

- Helius PFA for Plastics provides an integrated, simple approach to link the as-manufactured plastics simulation properties with structural simulation to increase FEA accuracy
 - Insight Ultimate 2018 Subscription customers have access to Helius PFA
 - Dissimilar mesh can be used (mapping suitability check)
 - Moldflow users can pass results to structural users
 - Simple interface for integration of both software packages
- Keys to increasing accuracy for structural simulation of plastics
 - Stiffness
 - Anisotropic
 - Nonlinear
 - Strength
 - Weld surface (meeting angle & movement, temp & pressure history)
 - Failure mode & load

Future Work

Future & Improvements

- Present validation with customer parts
- Improve prediction curve response
 - Include other effects into calculation:

terlamellar links

nch noints

- Crystallinity
- Polymer orientation
- Polymer blends
- Additives
- More comprehensive approach to weld/meld lines

Future & Improvements

- Integrate venting analysis
 - Vnotch effects
 - Air traps
 - Specimens molded with high injection rate contained a large number of air traps

	Injection Rate	
Run	(cm³/s)	Air Traps
1	40	1
2	40	0
3	80	7
4	80	3
5	80	2
6	80	7
7	40	0
8	40	1

MOLDFLOW SUMMIT 2017

Autodesk, the Autodesk logo, and Moldflow are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2017 Autodesk. All rights reserved.