FUSION 360 FREE CAD/CAM DESIGN SOFTWARE
FOR STUDENTS, EDUCATORS, AND ACADEMIC INSTITUTIONS

1. Get a free 3-year education license. Fusion 360 is available for Mac and PC at autodesk.com/fusion360-edu.
 - Download Fusion 360 through 3 easy steps.
 - Use full functions.

2. Get Started.
 Design now with Fusion 360 at autodesk.com/designnow.
 - Get designing in under 20 mins with 3D starter projects.
 - Continue your learning with beginner, intermediate, and advanced tutorials and video courses.

 - Webinars (academy.autodesk.com/webinars).
 - How-to videos.
 - Product design courses.
 - Educator lesson plans.

4. Showcase your skills with Autodesk Design for Industry student challenges at autodesk.com/designforindustry.
 - Design real-world products that are judged by a panel of industry professionals.
 - Provide your ability using Fusion 360.
 - Awards, mentorships and more.

5. Boost your resume by joining the student expert network at autodesk.com/studentexperts.
 The Autodesk Student Expert Network is a global community of students who are as passionate about design as you are. Connect with peers and industry professionals, advancing your technical know-how. Learn more, sign up and start today.

WORLDWIDE STUDENT DESIGN SHOWCASE 2018

Autodesk, the Autodesk logos, Fusion 360 and Breeder are registered trademarks or trademarks of Autodesk, Inc. and/or its subsidiaries and/or affiliates. All other trademarks and/or service marks are the property of their respective owners. Autodesk assumes no responsibility for any errors or omissions in the contents of this publication. © 2018 Autodesk, Inc. All rights reserved.
BEST OF THE BEST
STUDENT DESIGN SHOWCASE

The Autodesk Education Team is delighted to present our global showcase for the 2017-18 school year. This showcase highlights the creative talent of some of the best and brightest students in the post-secondary market. These students represent the next generation of design and manufacturing leaders.

The designs in this book cover a wide range of implementation from prototypes that are currently being tested in market to very futuristic concepts that could be decades away. All of the students have utilized cutting-edge Autodesk software to create these designs. As you explore them, we hope you come away inspired and excited by the future of making things.

Mary Hope McDougal, Vice President, Autodesk Education Experiences

United States
Iko Systems Inc. 03
Futuristic Helicopter 05
Orro 07
Growing with Neuroprosthetics 09
Brazil
Modular Shelter for Life 11
United Kingdom
Electron Cycles V1 13
Unmanned Aerial Vehicle 15
Germany
Project T.O.S.T. 17
Huawei Sonnenwagen 19

Turkey
ITU Rover 21
Japan
Hyperloop Pod 23
Lunavity 25
India
Mars Rover 27
Futuristic Bike Explorer 29
Singapore
Raven 31
China
The Singing of the Phoenix 33
Snarl Robot 35
Taiwan
Burn Enemy 37
Self-Assisted Variable Speed Wheelchair 39
ÍKO SYSTEMS INC.

Okavango, by Iko Systems, is a tabletop appliance that grows culinary herbs. Designed for urban gourmets who live in seasonal climates, Okavango emphasizes flavor, design, and ease of use.

Through climate control, the system creates unique flavors by mimicking optimal growing conditions in different regions—so you can cook with Tuscan herbs while living in a concrete jungle.

Not only is Okavango functional, but it also serves as a design piece. The system fits seamlessly into any kitchen with its soft lighting and the varieties of wood stain.

The team at Cornell has done years of hydroponic research, designing a proprietary, closed pod. There is no mess and no nutrient dosing—users just place the pod into the system and add water weekly.
This helicopter design demonstrates the power of modeling with Autodesk® Fusion 360™. The student designer wanted to show the different dynamics of a fighter helicopter while utilizing the simple aesthetics of a passenger craft. He created the initial model by combining front and side sketches, then used his imagination and creativity to explore various shapes, ultimately resulting in the final 3D rendering.
ORRO is the next step in safety and luxury for fully electric motorcycles. By integrating two 40-pound gyroscopic motors inside its frame, ORRO’s design ensures that the motorcycle and rider remain safely stabilized upright even if hit. A 360-degree array of sensors allows autonomous driving, and a smart pre-collision system helps to prevent accidents. But just as important as the riding experience is the seamless modern aesthetic of this motorcycle. After much sketching and ideation, ORRO’s designers created its smooth, distinctive look with the sculpt feature in Autodesk Fusion 360. The streamlined surface wraps around the innovative technology inside the vehicle, defining its shape and aerodynamic form.
The goal of the Michigan Neuroprosthetics team was to build an inexpensive neuroprosthetic device that could handle the continual growth of a child, enable a full range of motion, and be durable enough to withstand play. Through a combination of Autodesk® Fusion 360™ parametric modeling and sculpting, they achieved realistic fingers and a remarkable thumb and tendon-like structure. The natural grip of the hand was made possible through the additive manufacturing process. The device uses an EMG signal to receive data from the patient with which to control the hand’s opening and closing. The finished product is made of only 10 parts (compared to 30+ in a normal prosthesis) and is printed with PCTG, leading to a highly durable, chemical- and temperature-resistant device. The final device costs $100 to produce from scratch and is easy to customize, repair, or rebuild based on the child’s growth and activities.
The Modular Shelter for Life is a sustainable housing resource to protect families. It is comfortable, flexible, easy to build, and most important, it offers a secure shelter for people who need protection in case of a natural disaster or another type of conflict that forces them to leave their home.
The Electron Cycles V1 is a next-generation electric bike that combines a powerful 500-watt electric motor, to increase the range and speed of cycle journeys, and integrated smart features to make cycling a more attractive transport option.

The frame is composed of an extruded aluminium profile, fixed with additive manufactured connectors, enabling bikes to be economically produced in any geometry, completely tailored to the rider. The electronics are integrated inside the frame, resulting in a clean aesthetic.

An OLED screen displays real-time information to the rider, including speed and battery life, as well as location information. Vibration motors in the handlebars also provide turn-by-turn navigation signals.

A smart lock is integrated into the frame of the bike, combined with the charger for simple and secure operation. The bike can be unlocked using a fingerprint or also using a key. Fallsafe systems ensure the bike stays secure at all times.
UNMANNED AERIAL VEHICLE

University of Warwick fourth year students have developed an Unmanned Aerial Vehicle (UAV) to aid in mountain-rescue as part of the UK government-sponsored program Horizon (AM), which aims to encourage the advancement of additive manufacturing in aeronautics. The goal for the drone is a payload of approximately 5 kilograms and 80-kilometre range. Made from carbon fibre composite, its wingspan is 2.20 metres (7.2 feet). Autodesk Fusion 360 was used to collaboratively design moulds for the UAV’s fuselage, which were then printed on a large 3D format printer.
PROJECT T.O.S.T.

Project T.O.S.T. (Topology Optimized Skateboard Trucks) uses hybrid design and additive manufacturing to optimise the weight of titanium skateboard trucks. And designer Philipp Manger thinks that the principle of combining a bionic design with an internal lattice structure can transfer to many other applications that require lightweight design. Using Autodesk® SketchBook®, AutoCAD® Fusion 360, and Netfabb® Ultimate software, Philipp created and tested the skateboard trucks himself in collaboration with Autodesk, Fraunhofer IWU, 58 Concept Laser, and skatedeck.de. His design was a winner at 3D Pioneers Challenge 2017 and was shortlisted for the 2017 TCT Awards.
Sonnenwagen Aachen is a team of university students from Aachen, Germany, who used Fusion 360 to create a completely solar-powered car. In October 2017, they competed in the World Solar Challenge, a biennial competition in which groups traverse 3,000 kilometers through the Australian outback in vehicles powered by the sun and kinetic energy alone. Fusion 360 ended up being just the solution the student group needed. The platform not only enabled them to build and perfect the car from scratch, it also facilitated teamwork, so every member could collaborate, make changes, provide feedback, and keep up to date with what was happening with the project, no matter where they were.
TU ROVER

The ITU Rover Team is made up of more than 30 engineering students at Istanbul Technical University. The team works on unmanned land vehicles, focusing on Mars rover prototypes. Every year they represent Turkey at the University Rover Challenge, an international contest held by the Mars Society, and this year they used Autodesk software to create the motion mechanism and robotic arm for their next-generation rover.
In 2013 Elon Musk, the CEO of SpaceX, shared his vision for a next-generation high-speed ground transportation system called Hyperloop. To accelerate the development of functional prototypes, SpaceX announced the Hyperloop Pod Competition, inviting engineering teams from universities around the world to design and build a pod to run in a half-scale test tunnel. The first competition, held in January 2017, had over 1,200 entries, which were then narrowed to feature 27 prototypes.

The Keio Alpha team from Keio University in Japan, a finalist in the competition, chose Fusion 360 to create their pod design. Team members could share data via the cloud from their respective locations, enabling them to successfully complete their design within eight weeks. The team’s vision was to realize the futuristic idea of “live anywhere, work anywhere, be anywhere.” Keio Alpha’s pod won accolades from SpaceX because of its compact size and feasibility.
Lunavity is a backpack multicoptor that aims to augment the ability to jump by simulating reduced gravity. The device is installed on your back, supporting body weight and generating thrust power with 16 electric ducted fans—helping you jump higher and stay in the air longer.

Unlike with other flying devices or jetpacks, users of Lunavity will experience simulated reduced gravity to create the feeling of walking on Mars or the Moon. The University of Tokyo team that created Lunavity envisions a future where Jump Augmentation will help people play new types of sports and easily move around with intuitive control.
MARS ROVER

Team Arveshak designed the Mars Rover to work alongside astronauts on the red planet. It can perform several tasks, including autonomously traversing uneven terrain, performing soil analysis, and servicing equipment that tests its mechanical and electrical capabilities. The team set out to create a modular, low-cost all-terrain rover that could be used for various missions, such as defense, reconnaissance, and search and rescue.
FUTURISTIC BIKE EXPLORER

Mayank Gala DSK ISD Rubika International Campus

This futuristic cycle was designed for enthusiastic adventurers who want to discover unexplored places. Not just a fast bike, this ranger-like quad-bike can effortlessly explore uneven terrain where regular vehicles cannot go. Inspired by video games and sci-fi stories, this design was a winning entry at the Honda Design Competition held in Bangkok, Thailand.
In designing Raven, a semi-autonomous drone for search and rescue of victims of natural disasters and chemical sample collection operations, students at SUTD created a carbon fiber chassis for durability and increased payload-carrying capabilities. The motor mount was custom 3D printed, and an ultrasonic sensor array helped ensure collision avoidance and altitude holding. They used Autodesk® Eagle™ software to design printed circuit boards (PCBs) to simplify trouble shooting of electronics connections and easily integrate the collision avoidance system.
Students from DATA China developed a stunning arhu—a two-stringed bowed Chinese musical instrument—that was not only lighter and stronger than the traditional instrument, but able to stand on its own without compromising sound quality. The Singing of the Phoenix, as their creation was dubbed, looks and sounds just as delightful as its name.
This snail robot can transport food from a warehouse to your kitchen, and then deliver meals from kitchen to table. The robot is designed to perform a number of duties: it can wait next to the table, adjust the speed of delivery, change direction, and track its path to avoid colliding with other snails.
BURN ENEMY

Chen Yingyou from Far East University, Taiwan, envisioned an electric guitar design that would never go out of style—and Ikrm Enemy was born. Inspired by Japanese Ukiyo-e elements as well as the charming dance of crackling flames, the hollow model electric guitar was created with CNC machine milling.
This self-assisted wheelchair can change its internal transmission speed to fit different environments. Triple-wheel legs are set at both the front and back of the chair to help users avoid obstacles and maintain self-reliance.