
Using Parallel Maya
2026

Using Parallel Maya Contents

Contents

Overview 5

Key Concepts 5

Supported Evaluation Modes 9

First Make it Right Then Make it Fast 10

Evaluation Graph Correctness . 10

Thread Safety . 11

Safe Mode . 14

Evaluation Graph Invalidation 14

Reduce Graph Rebuild 15

Idle Actions 15

Benefits . 16

Caveats . 16

Manipulation 17

Manipulation Prevalidation . 17

Partial Evaluation . 18

Custom Evaluators 18

GPU Override . 19

Dynamics Evaluator . 24

Reference Evaluator . 26

Invisibility Evaluator . 26

Partitioning and Scheduling Modes . 27

Frozen Evaluator . 28

The Frozen Attribute . 28

Operation . 29

2026 1

Using Parallel Maya Contents

Setting Options . 30

Limitations . 31

Curve Manager Evaluator . 31

Other Evaluators . 33

Evaluator Conflicts . 34

API Extensions 34

Parallel Evaluation . 35

Skipping Evaluation . 36

Custom GPU Deformers . 37

Fan‐In Evaluation . 38

Custom Evaluator API . 38

The Basics . 39

API Reference . 41

SimpleEvaluator API Example . 43

Prune Evaluator API . 47

PruneEvaluator API Example . 48

VP2 Integration . 48

Tracking Topology . 51

Profiling Plug‐ins . 51

Profiling Your Scene 51

Understanding Your Profile . 52

Profiler Colors . 53

DG Evaluation . 54

EM Parallel Evaluation . 55

EM Parallel Evaluation with GPU Override . 56

EM Evaluation Cached Playback . 57

EM VP2 Hardware Cached Playback . 58

Evaluation‐Bound Performance . 58

Render‐Bound Performance . 61

Saving and Restoring Profiles . 64

2026 2

Using Parallel Maya Contents

Troubleshooting Your Scene 64

Analysis Mode . 64

Graph Execution Order . 66

The Evaluation Toolkit . 66

Known Limitations 66

Appendices 67

Profiler File Format . 67

Debugging Commands . 69

dbcount . 70

dbmessage . 70

dbtrace . 70

dgdebug . 73

dgdirty . 73

dgeval . 73

dgInfo . 74

dgmodified . 74

dbpeek . 74

dbpeek ‐op attributes . 75

dbpeek ‐op cache . 77

dbpeek ‐op cmdTracking . 77

dbpeek ‐op connections . 77

dbpeek ‐op data . 78

dbpeek ‐op context . 78

dbpeek ‐op edits . 81

dbpeek ‐op evalMgr . 81

dbpeek ‐op graph . 81

dbpeek ‐op mesh . 82

dbpeek ‐op metadata . 83

dbpeek ‐op node . 83

2026 3

Using Parallel Maya Contents

dbpeek ‐op nodes . 84

dbpeek ‐op nodeTracking . 84

dbpeek ‐op plugs . 84

Revisions 85

2026 . 85

2025 . 85

2024 . 85

2023 . 86

2022 . 86

2020 . 86

2019 . 86

2018 . 87

2017 . 87

2016 Extension 2 . 88

2016 . 88

2026 4

Using Parallel Maya Key Concepts

Overview

This guide describes theMaya features for accelerating playback andmanipulation of animated scenes. It
covers key concepts, shares best practices/usage tips, and lists known limitations that we aim to address
in subsequent versions of Maya.

This guide will be of interest to riggers, TDs, and plug‐in authors wishing to take advantage of speed
enhancements in Maya.

If you would like an overview of related topics prior to reading this document, check out Supercharged
Animation Performance in Maya 2016.

Key Concepts

Starting from Maya 2016, Maya accelerates existing scenes by taking better advantage of your hardware.
Unlike previous versions of Maya, which were limited to node‐level parallelism, Maya now includes a
mechanism for scene‐level analysis and parallelization. For example, if your scene contains different char‐
acters that are unconstrained to one another, Maya can evaluate each character at the same time.

Similarly, if your scene has a single complex character, it may be possible to evaluate rig sub‐sections
simultaneously. As you can imagine, the amount of parallelism depends on how your scene has been
constructed. We will get back to this later. For now, let’s focus on understanding key Maya evaluation
concepts.

At the heart of Maya’s new evaluation architecture is an Evaluation Manager (EM), responsible for han‐
dling the parallel‐friendly representation of your scene. It maintains (and updates while the scene is
edited) a few data structures (described below) used for efficient evaluation.

The basic description of the scene is theDependency Graph (DG), consisting ofDGnodes and connections.
Nodes can have multiple attributes, and instances of these attributes on a specific node are called plugs.
The DG connections are at the plug level, that is, two nodes can be connected to one another multiple
ways through different plugs. Generally speaking, these connections represent data flow through the
nodes as they evaluate. The following image shows an example DG:

2026 5

https://www.youtube.com/watch?v=KKC7A9bbUuk
https://www.youtube.com/watch?v=KKC7A9bbUuk

Using Parallel Maya Key Concepts

The dotted arrows inside the nodes represent an implicit computation dependency between an output
attribute (on the right of the node) and the input attributes (on the left) being read to compute the result
stored in the output.

Before Parallel Maya, the DG was used to evaluate the scene using a Pull Model or Pull Evaluation. In
this model, the data consumer (for instance the renderer) queries data from a given node. If the data
is already evaluated, the consumer receives it directly. However, if the data is dirty, the node must first
recompute it. It does so by pulling on the inputs required to compute the requested data. These inputs
can also be dirty, in which case the evaluation request will then be forwarded to those dirty sources until
it reaches the point where the data can be evaluated. The result then propagates back up in the graph,
as the data is being “pulled”.

This evaluationmodel relies on the ability to mark node data as invalid and therefore requiring new evalu‐
ation. This mechanism is known as the Dirty Propagation in which the invalid data status propagates to all
downstream dependencies. The twomain cases where dirty propagation happened in the Pull Evaluation
model were when:

• the current time is changed: in this case, animation curves no longer have the right value which
depends on the current time. Therefore, dirty propagation starts from each animation curve and
the dirty status is propagated through the graph to reach everything depending on time, directly
or indirectly.

• a value is changed on a node: whether the value is being changed through interactive manipula‐
tion or by a script, all data that depends on this new value must be recomputed. Therefore, dirty
propagation starts from the edited plug and the dirty status is propagated through the graph to
reach everything depending on the edited attribute.

The Pull Evaluationmodel is not well suited for efficient parallel evaluation because of potential races that
can arise from concurrent pull evaluations.

To have tighter control over evaluation, Maya now uses a Forward Evaluationmodel to enable concurrent
evaluation ofmultiple nodes. The general idea is simple: if all a node’s dependencies have been evaluated

2026 6

Using Parallel Maya Key Concepts

before we evaluate the given node, pull evaluation will not be triggered when accessing evaluated node
data, so evaluation remains contained in the node and is easier to run concurrently.

All data dependencies between the nodes must be known to apply this evaluation model, and this infor‐
mation is captured in the Evaluation Graph (EG), containing Evaluation Nodes. The EM uses dirty propa‐
gation to capture dependency information between the nodes, as well as which attributes are animated.
EG connections represent node‐level dependencies; destination nodes employ data from source nodes
to correctly evaluate the scene. One important distinction between the DG and the EG is that the former
uses plug‐level connections, while the latter uses node‐level connections. For example, the previous DG
would create the following EG:

A valid EGmay not exist or become invalid for various reasons. For example, you have loaded a new scene
and no EG has been built yet, or you have changed your scene, invalidating a prior EG. However, once the
EG is built, unlike previous versions of Maya that propagated dirty on every frame, Maya now disables
dirty propagation, reusing the EG until it becomes invalid.

Tip. If your scene contains expression nodes that use getAttr, the DG graph will be missing
explicit dependencies. This results in an incorrect EG. Expression nodes also reduce the amount
of parallelism in your scenes (see Scheduling Types for details). Consider removing getAttr from
expressions and/or using utility nodes.

While the EG holds the dependency information, it is not ready to be evaluated concurrently as‐is. The
EM must first create units of work that can be scheduled, that is, tasks. The main types of task created
are:

• Individual Nodes: in the simplest case, an evaluation node can be computed directly. The task
therefore consists of evaluating all of its animated attributes.

2026 7

Using Parallel Maya Key Concepts

• Cycle Clusters: depending on the scene, the EG may contain circular node‐level dependencies. If
this is the case, the EM creates clusters that group together nodes in the same cycle. At scene
evaluation time, nodes in cycle clusters are evaluated serially before continuing with other parallel
parts of the EG, hence the evaluation of a cycle cluster consisting of a single task. While node‐level
cycles are perfectly legal, creating scenes with attribute‐level cycles should be avoided as this is
unsupported and leads to unspecified behavior.

• Custom Evaluator Clusters: the EM supports the concept of custom evaluators to override evalu‐
ation of sub‐section of the EG. One example of this is the GPU override, which uses your graphics
card’s graphics processing unit (GPU) to accelerate deformations. The custom evaluators will cre‐
ate clusters for nodes for which they take responsibility, and the EM creates a task for each of these
clusters. At scene evaluation time, control is passed to the specific custom evaluator when the task
is up to be executed.

This step, called partitioning, is where the EM creates the individual pieces of work that will have to
be executed. Each of these tasks will map to a Scheduling Node in the Scheduling Graph (SG), where
connections represent dependencies between the tasks:

2026 8

Using Parallel Maya Supported Evaluation Modes

The SG is an acyclic graph, otherwise it would be impossible to schedule nodes in a cycle since there
would be no starting point forwhich all dependencies could be evaluated. In addition to the dependencies
that come directly from the EG, the SG can have additional scheduling constraints to prevent concurrent
evaluation of subsets of nodes (see Scheduling Types for details).

Supported Evaluation Modes

Starting in Maya 2016, 3 evaluation modes are supported:

Mode What does it do?

DG Uses the legacy Dependency Graph‐based evaluation of your scene. This was
the default evaluation mode prior to Maya 2016

Serial Evaluation Manager Serialmode. Uses the EG but limits scheduling to a single
core. Serial mode is a troubleshooting mode to pinpoint the source of
evaluation errors.

Parallel Evaluation Manager Parallelmode. Uses the EG and schedules evaluation
across all available cores. This mode is the new Maya default since 2016.

When using either Serial or Parallel EM modes, you can also activate GPU Override to accelerate defor‐
mations on your GPU. You must be in Viewport 2.0 to use this feature (see GPU Override).

To switch between different modes, go to the Preferences window (Windows > Settings/Preferences >
Preferences > Animation). You can also use the evaluationManager MEL/Python command; see docu‐
mentation for supported options.

2026 9

Using Parallel Maya First Make it Right Then Make it Fast

To see the evaluation options that apply to your scene, turn on the Heads Up Display Evaluation options
(Display > Heads Up Display > Evaluation).

First Make it Right Then Make it Fast

Before discussing how to make your Maya scene faster using Parallel evaluation, it is important to ensure
that evaluation in DG and EM modes generates the same results. If you see different results in the view‐
port during animation (as compared to previous versions of Maya), or tests reveal numerical errors, it is
critical to understand the cause of these errors. Errors may be due to an incorrect EG, threading related
problems, or other issues.

Below, we review Evaluation Graph Correctness and Thread Safety, two important concepts to under‐
stand errors.

Evaluation Graph Correctness

If you see evaluation errors, first test your scene in Serial evaluation mode (see Supported Evaluation
Modes). Serial evaluationmode uses the EM to build an EG of your scene, but limits evaluation to a single
core to eliminate threading as the possible source of differences. Note that since Serial evaluation mode
is provided for debugging, it has not been optimized for speed and scenes may run slower in Serial than
in DG evaluation mode. This is expected.

If transitioning to Serial evaluation eliminates errors, this suggests that differences are most likely due
to threading‐related issues. However, if errors persist (even after transitioning to Serial evaluation) this
suggests that the EG is incorrect for your scene. There are a few possible reasons for this:

Custom Plugins. If your scene uses custom plug‐ins that rely on the mechanism provided by the
MPxNode::setDependentsDirty function to manage attribute dirtying, this may be the source of prob‐
lems. Plug‐in authors sometimes use MPxNode::setDependentsDirty to avoid expensive calculations
in MPxNode::compute by monitoring and/or altering dependencies and storing computed results for
later re‐use.

Since the EM relies on dirty propagation to create the EG, any custom plug‐in logic that alters dependen‐
cies may interfere with the construction of a correct EG. Furthermore, since the EM evaluation does not
propagate dirty messages, any custom caching or computation in MPxNode::setDependentsDirty is
not called while the EM is evaluating.

If you suspect that your evaluation errors are related to custom plug‐ins, temporarily remove the associ‐
ated nodes from your scene and validate that both DG and Serial evaluation modes generate the same
result. Once you have made sure this is the case, revisit the plug‐in logic. The API Extensions section
covers Maya SDK changes that will help you adapt plug‐ins to Parallel evaluation.

2026 10

Using Parallel Maya First Make it Right Then Make it Fast

Another debugging option is to use “scheduling type” overrides to force custom nodes to be scheduled
more conservatively. This approach enables the use of Parallel evaluation even if only some of the nodes
are thread‐safe. Scheduling types are described in more detail in the Thread Safety section.

Errors in Autodesk Nodes. Although we have done our best to ensure that all out‐of‐the‐box Autodesk
Maya nodes correctly express dependencies, sometimes a scene uses nodes in an unexpected manner. If
this is the case, we ask you make us aware of scenes where you encounter problems. We will do our best
to address problems as quickly as possible.

Thread Safety

Prior to Maya 2016, evaluation was single‐threaded and developers did not need to worry about making
their code thread‐safe. At each frame, evaluation was guaranteed to proceed serially and computation
would finish for one node prior to moving onto another. This approach allowed for the caching of inter‐
mediate results in global memory and using external libraries without considering their ability to work
correctly when called simultaneously from multiple threads.

These guarantees no longer apply. Developers working in recent versions of Maya must update plug‐ins
to ensure correct behavior during concurrent evaluation.

Two things to consider when updating plug‐ins:

• Different instances of a node type should not share resources. Unmanaged shared resources can
lead to evaluation errors since different nodes, of the same type, can have their compute()meth‐
ods called at the same time.

• Avoid non thread‐safe lazy evaluation. In the EM, evaluation is scheduled from predecessors to
successors on a per‐node basis. Once computation has been performed for predecessors, results
are cached, and made available to successors via connections. Any attempt to perform non‐thread
safe lazy evaluation could return different answers to different successors or, depending on the
nature of the bug, instabilities.

Here’s a concrete example for a simple node network consisting of 4 nodes:

2026 11

Using Parallel Maya First Make it Right Then Make it Fast

In this graph, evaluation first calculates outputs for Node1 (that is, Node1.A, Node1.B, Node1.C), followed
by parallel evaluation of Nodes 2, 3, and 4 (that is, Read Node1.A to use in Node2, Read Node1.B to use
in Node3, and so on).

Knowing that making legacy code thread‐safe requires time, we have added new scheduling types to
provide control over how the EM schedule nodes. Scheduling types provide a straightforward migration
path, so you do not need to hold off on performance improvements, just because a few nodes still need
work.

There are 4 scheduling types:

Scheduling Type What are you telling the scheduler?

Parallel Asserts that the node and all third‐party libraries used by the node are
thread‐safe. The scheduler may evaluate any instances of this node at the
same time as instances of other nodes without restriction.

Serial Asserts it is safe to run this node with instances of other nodes. However, all
nodes with this scheduling type should be executed sequentially within the
same evaluation chain.

Globally Serial Asserts it is safe to run this node with instances of other node types but only
a single instance of this node type should be run at a time. Use this type if
the node relies on static state, which could lead to unpredictable results if
multiple node instances are simultaneously evaluated. The same restriction
may apply if third‐party libraries store state.

2026 12

Using Parallel Maya First Make it Right Then Make it Fast

Scheduling Type What are you telling the scheduler?

Untrusted Asserts this node is not thread‐safe and that no other nodes should be
evaluated while an instance of this node is evaluated. Untrusted nodes are
deferred as much as possible (that is, until there is nothing left to evaluate
that does not depend on them), which can introduce costly synchronization.

By default, nodes scheduled as Serial provide a middle ground between performance and stability/safety.
In some cases, this is too permissive and nodes must be downgraded to GloballySerial or Untrusted. In
other cases, somenodes can be promoted to Parallel. As you can imagine, themore parallelism supported
by nodes in your graph, the higher level of concurrency you are likely to obtain.

Tip. When testing your plug‐ins with Parallel Maya, a simple strategy is to schedule nodes with the
most restrictive scheduling type (that is, Untrusted), and then validate that evaluation produces
correct results. Raise individual nodes to the next scheduling level, and repeat the experiment.

There are three ways to alter the scheduling level of your nodes:

Evaluation Toolkit. Use this tool to query or change the scheduling type of different node types.

C++/Python API methods. Use the OpenMaya API to specify the desired node scheduling by overriding
the MPxNode::schedulingType method. This function should return one of the enumerated values
specified by MPxNode::schedulingType. See the Maya MPxNode class reference for more details.

MEL/Python Commands. Use the evaluationManager command to change the scheduling type of nodes
at runtime. Below, we illustrate how you can change the scheduling of scene transform nodes:

Scheduling Type Command

Parallel evaluationManager ‐nodeTypeParallel on "transform"
Serial evaluationManager ‐nodeTypeSerialize on "transform"
GloballySerial evaluationManager ‐nodeTypeGloballySerialize on "transform"
Untrusted evaluationManager ‐nodeTypeUntrusted on "transform"

The Evaluation Toolkit and MEL/Python Commands method to alter node scheduling level works using
node type overrides. They add an override that applies to all nodes of a given type. Using C++/Python
API methods and overriding the MPxNode::schedulingType function gives the flexibility to change the
scheduling type for each node instance. For example, expression nodes are marked as globally serial if
the expression outputs are a purely mathematical function of its inputs.

The expression engine is not thread‐safe so only one expression can run at a time, but it can run in parallel
with any other nodes. However, if the expression uses unsafe commands (expressions could use any

2026 13

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_node_html

Using Parallel Maya Evaluation Graph Invalidation

command to access any part of the scene), the node is marked as untrusted because nothing can run
while the expression is evaluated.

This changes the way scheduling types should be queried. Using the evaluationManager command
with the above flags in query mode will return whether an override has been set on the node type, using
either the Evaluation Toolkit or the MEL/Python commands.

The Evaluation Toolkit window lets you query both the override type on the node type (which cannot
vary from one node of the same type to the other), or the actual scheduling type used for a node when
building the scheduling graph (which can change from one node instance to the other).

Safe Mode

On rare occasions you may notice that Maya switches from Parallel to Serial evaluation during manipula‐
tion or playback. This is due to SafeMode,which attempts to trap errors that possibly lead to instabilities.
If Maya detects that multiple threads are attempting to simultaneously access a single node instance,
evaluation will be forced to Serial execution to prevent problems.

Tip. If Safe Mode forces your scene into Serial mode, the EM may not produce the expected
incorrect results when manipulating. In such cases you can either disable the EM:

cmds.evaluationManager(mode="off")

or disable EM‐accelerated manipulation:

cmds.evaluationManager(man=0)

While Safe Mode exposes many problems, it cannot catch them all. Therefore, we have also developed
a special Analysis Mode that performs a more thorough (and costly) check of your scene. Analysis mode
is designed for riggers/TDs wishing to troubleshoot evaluation problems during rig creation. Avoid using
Analysis Mode during animation since it will slow down your scene.

Evaluation Graph Invalidation

As previously described, the EG adds necessary node‐level scheduling information to the DG. To make
sure evaluation is correct, it is critical the EG always be up‐to‐date, reflecting the state of the scene. The
process of detecting things that have changed and rebuilding the EG is referred to as graph invalidation.

Different actions may invalidate the EG, including:

• Adding/removing nodes
• Changing the scenes transformation (DAG) hierarchy

2026 14

Using Parallel Maya Idle Actions

• Adding/removing extension attributes
• Loading an empty scene or opening a new file

Other, less obvious, actions include:

• Static animation curves. Although animation curves are time‐dependent, DG evaluation treats
curves with identical (static) keys as time‐independent to avoid unnecessary calculations. The EG
uses a similar optimization, excluding and avoiding scheduling of static animation curves. This
keeps the EG compact, making it fast to build, schedule, and evaluate. A downside of this approach
is that changes to static animation curveswill cause the EG to become invalid; on time changeMaya
will rebuild the EG and determine if curves should be treated as time‐dependent and added to the
EG.

• Dirty propagation crossing the Evaluation Graph. The DG architecture allowed for implicit depen‐
dencies (that is, dependencies not expressed via connections), using them during dirty propaga‐
tion. When dirty propagation is detected for these implicit dependencies, the EG will invalidate
itself since this could signal the need to add new dependencies to the EG.

Frequent graph invalidations may limit parallel evaluation performance gains or even slow it down (see
Idle Actions), since Maya requires DG dirty propagation and evaluation to rebuild the EG. To avoid un‐
wanted graph rebuilds, consider adding 2 keys, each with slightly different values, on rig attributes that
you expect to use frequently or take a look at the Reduce Graph Rebuild section. You can also lock static
channels to prevent creation of static animation curves during keying. We expect to continue tuning this
area of Maya, with the goal of making the general case as interactive as possible.

Reduce Graph Rebuild

Frequent invalidation leads to constant rebuild and repartition wait time. This can hurt the fluidity of
the workflow. One common source of invalidation is the initial keying on objects. When setting the first
two keys on a node, it triggers an invalidation since it changed the topology of the EM graph. But in the
case where the keyed attribute is already considered animated by the EM, there is no harm in letting
EM think that there is no change in the graph and skipping the invalidation. In the EM we can force the
prepopulation of animatable attributes when the node is taggedwith a controller. See the CurveManager
Evaluator section for more advanced graph prepopulation. Once all the desired nodes are tagged, adding
or removing a key to them will no longer cause an invalidation.

Idle Actions

In this section, we discuss the different idle actions available in Maya that helps rebuild the EG without
any intervention from the user. Prior toMaya 2019, only one idle action, the EG rebuild, was available, but

2026 15

Using Parallel Maya Idle Actions

it was not enabled by default. Since Maya 2019, we have added another idle action, the EG preparation
for manipulation, and both of these are enabled by default.

Here is a description of the idle actions:

Idle Action Description

EG Rebuild Builds the graph topology. This idle action is executed after a file load
operation, or after a graph topology invalidation.

EG Preparation for
manipulation

Partitions and schedules the graph. This idle action is executed after a
graph rebuild (either manually or through the idle action), or after a
partitioning invalidation.

Tip. You can use the evaluationManager command to change which idle actions are enabled. You
can enable and disable both idle actions individually.

Benefits

To make use of the Parallel Evaluation and GPU deformation during manipulation, the EG needs to be
properly built, partitioned and scheduled, otherwise it will revert to DG. These idle actions allow the EG
to automatically build and be ready to use when needed, since they are triggered at file load and after
graph invalidation.

If you use Cached Playback, your cache automatically refills, too. This way, you can start playing from
cache as soon as the scene is loaded or after you modify to the scene.

Caveats

In a typical frame evaluation, temporary values that are set on keyed attributes are restored to their
original values, that is, the values on their associated curves. With the idle actions, this is an unwanted
behavior, otherwise you would not be able to do any modifications to keyed attributes. To circumvent
that issue, we had to add some special behaviors. One of these is the dirty propagation from stale plugs
after an idle preparation formanipulation. Whennot in idle preparation formanipulation, this operation is
done during the partitioning and scheduling phase. With idle preparation formanipulation, this operation
is done at the next complete evaluation. Therefore, if you have many static curves, you might experience
a slowdown on the first frame of playback.

If you do frequent operations that invalidate the graph or partitioning, you may experience some slow‐
downs due to the graph always being rebuilt. In such cases, it is advised that you disable the offending
idle action until you are done.

2026 16

https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/evaluationManager.html

Using Parallel Maya Manipulation

Manipulation

This section describes how the Evaluation Manager can be used to accelerate interactive manipulation.

Before providing accelerated manipulation, the EvaluationManager must validate that the requested ma‐
nipulation can safely be evaluated in parallel. This requires the manipulated attributes, along with all
their downstream dependencies, to be known to the Evaluation Manager and therefore be part of the
Evaluation Graph. Since the Evaluation Graph is built for the animated attributes, this typically means
that accelerated manipulation is available for animated attributes.

Tip. You can use the controller command to identify objects that are used as animation sources
in your scene. If the Include controllers in evaluation graph option is set (see Windows > Set‐
tings/Preferences > Preferences, then Settings > Animation), the objects marked as controllers
will automatically be added to the evaluation graph even if they are not animated yet. This allows
Parallel evaluation for manipulation even if they have not yet been keyed.

See the Curve Manager Evaluator section for more advanced graph prepopulation.

Manipulation Prevalidation

Before allowing accelerated manipulation, the Evaluation Manager runs a prevalidation phase to make
sure all the manipulated attributes are supported. If they are, accelerated manipulation can be allowed
right away and happens on the very first frame of manipulation.

However,Manipulation Prevalidation can fail for a number of reasons: someof themanipulated attributes
might not be known to the Evaluation Manager, only some of the channels of a compound attribute (like
translate) might be animated, non‐trivial controller setups might be used, etc. If that is the case, the
Evaluation Manager will resort to dirty propagation from the manipulated attributes to validate whether
this dirty propagation only touches nodes and attributes that are known to the EvaluationManager. While
this step is more expensive, it is the ground truth to determine whether or not it is safe to evaluate the
result of the manipulation in parallel. Manipulation Prevalidation can be thought of as an optimization
attempting to recognize supported patterns to avoid this expensive step in a safe subset of the use cases.

Tip. It is possible to disable Manipulation Prevalidation using the Evaluation Toolkit. In the 01)
Modes section, in Advanced, uncheck the Manipulation Prevalidation checkbox. Note that this
should only be used for debugging purposes and should never be required.

The following profiler image illustrates what happens whenManipulation Prevalidation fails to determine
whether it is safe or not to perform acceleratedmanipulation. The first evaluated framewill happen using

2026 17

https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/controller.html

Using Parallel Maya Custom Evaluators

serial DG evaluation: first, a phase of dirty propagation which will be monitored to determine the safety
of running subsequent frames in parallel; second, pull evaluation. If the dirty propagation phase confirms
accelerated manipulation can be done safely, following frames will be fully accelerated.

Partial Evaluation

Accelerated manipulation does not evaluate all nodes inside the Evaluation Graph. Instead, it tries to do
the minimum amount of work, i.e. only evaluate the nodes affected by the manipulated attributes. This
is known as partial evaluation.

The concept is fairly simple: during an accelerated manipulation frame, only the nodes marked for partial
evaluationwill be computed. Initially, themanipulated nodes aremarked, and then all downstreamnodes
(i.e. all affected nodes) are marked recursively.

For instance, in amulti‐character scene, partial evaluationmakes sure only themanipulated character will
be recomputed, instead of every character in the scene.

Custom Evaluators

In this section, we describe mechanisms to perform targeted evaluation of node sub‐graphs. This ap‐
proach is used by Maya to accelerate deformations on the GPU and to catch evaluation errors for scenes
with specific nodes. Maya 2017 also introduced new Open API extensions, allowing user‐defined custom
evaluators.

2026 18

Using Parallel Maya Custom Evaluators

Tip. Use the evaluator command to query the available/active evaluators or modify currently ac‐
tive evaluators. Some evaluators support using the nodeType flag to filter out or include nodes of
certain types. Query the info flag on the evaluator for more information on what it supports.

Returns a list of all currently available evaluators.
import maya.cmds as cmds
cmds.evaluator(query=True)
Result: [u'invisibility',
u'frozen',
...
u'transformFlattening',
u'pruneRoots'] #

Returns a list of all currently enabled evaluators.
cmds.evaluator(query=True, enable=True)
Result: [u'invisibility',
u'timeEditorCurveEvaluator',
...
u'transformFlattening',
u'pruneRoots'] #

Note: Enabling or disabling custom evaluators only applies to the current Maya session: the state is
not saved in the scene nor in the user preferences. The same applies to configuration done using the
evaluator command and the configuration flag.

GPU Override

Maya contains a custom deformer evaluator that accelerates deformations in Viewport 2.0 by targeting
deformation to the GPU. GPUs are ideally suited to tackle problems such as mesh deformations that re‐
quire the same operations on streams of vertex and normal data. We have includedGPU implementations
for several of the most commonly‐used deformers in animated scenes: blendShape, cluster, createCol‐
orSet, deltaMush, ffd, groupParts,mesh,morph, nonLinear, polyColorPerVertex, polyNormalPerVertex,
polySmoothFace, polyTweakUV, proximityWrap, sculpt, skinCluster, softMod, solidify, tension, tweak
and wire.

2026 19

Using Parallel Maya Custom Evaluators

Tip. Use the deformerEvaluator command to query the available GPU deformers.

Returns a list of all currently available GPU deformers.
import maya.cmds as cmds
sorted(cmds.deformerEvaluator(query=True, deformers=True))
Result: [u'blendShape',
u'cluster',
...
u'tweak',
u'wire'] #

Unlike Maya’s previous deformer stack that performed deformations on the CPU and subsequently sent
deformed geometry to the graphics card for rendering, the GPU override sends undeformed geometry
to the graphics card, performs deformations in OpenCL and then hands off the data to Viewport 2.0 for
rendering without read‐back overhead. We have observed substantial speed improvements from this
approach in scenes with dense geometry.

In Maya 2024 deformers are scheduled in more granular fashion instead of as a few large clusters to allow
for better pruning of the graph.

Another change inMaya 2024 is that the evaluator claims nodes that can potentially go on theGPU instead
of only nodes that have been fully checked and verified to be evaluated on the GPU.WhenGPU evaluation
is turned on, the evaluator now dynamically decides which nodes are evaluated on the GPU or on the CPU.
This greatly reduces the need for repartitioning as nodes switch from GPU to CPU and vice‐versa.

Finally, Maya 2024 added support for GPU download (read‐back) of data to the CPU. Prior to Maya 2024
a non‐GPU node such as uvPin or follicle could prevent an entire character from running on the GPU but
this is no longer the case. This can greatly improve performance by allowing more nodes to run on the
GPU.

Note: GPU download is always on, but can be turned off temporarily for debugging in the Evaluation
Toolkit. Alternatively, you can block GPU Download per group of connected nodes in the GPU Outliner as
a blocking policy.

Even if your scene uses only supported deformers, GPU override may not be enabled due to the use of
unsupported node features in your scene. For example, all deformers will be pulled out of GPU evaluation
if the weightFunction attribute is animated or if the current geometry is used to compute the weights
(instead of the original geometry).

Additional deformer‐specific limitations are listed below:

2026 20

https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

Deformer Limitation(s)

blendShape The following attribute values are ignored:

• baseOrigin
• icon
• normalizationId
• origin
• parallelBlender
• supportNegativeWeights
• targetOrigin
• topologyCheck

cluster n/a
createColorSet Only a passthrough, does not actually affect deformation
deltaMush Pulls out of GPU deformation if original geometry

is animated or if any of the following attributes is
animated:

• smoothingIterations
• smoothingAlgorithm
• smoothingStep
• inwardConstraint
• outwardConstraint
• distanceWeight
• pinBorderVertices

ffd n/a
groupParts Only a passthrough, does not actually affect deformation
mesh Required as part of geometry chains, does not actually affect deformation
morph Pulls out of GPU deformation if original geometry is animated
nonLinear Default setup creates a cycle preventing GPU deformation
polyColorPerVertex Only a passthrough, does not actually affect deformation
polyNormalPerVertex Only a passthrough, does not actually affect deformation
polySmoothFace Pulls out of GPU deformation if division level is not 0
polyTweakUV Only a passthrough, does not actually affect deformation
proximityWrap Pulls out of GPU deformation if original geometry is animated
sculpt n/a

2026 21

Using Parallel Maya Custom Evaluators

Deformer Limitation(s)

skinCluster The following attribute values are ignored:

• bindMethod
• bindPose
• bindVolume
• dropOff
• heatmapFalloff
• influenceColor
• lockWeights
• maintainMaxInfluences
• maxInfluences
• nurbsSamples
• paintTrans
• smoothness
• weightDistribution

softMod

• Only volume falloff is supported when
distance cache is disabled

• Falloff must occur on all axes
• Partial resolution must be disabled

solidify Pulls out of GPU deformation if original geometry is animated
tension Pulls out of GPU deformation if original geometry is animated
tweak

• Pulls out of GPU deformation if partial
component is used

• Only relative mode is supported.
relativeTweak must be set to 1.

wire Pulls out of GPU deformation if holder curves are present

A few other reasons that can prevent GPU override from accelerating your scene:

• Meshes not sufficiently dense. Unless meshes have a large number of vertices, it is still faster
to perform deformations on the CPU. This is due to the driver‐specific overhead incurred

2026 22

Using Parallel Maya Custom Evaluators

when sending data to the GPU for processing. For deformations to happen on the GPU,
your mesh needs over 500/2000 vertices, on AMD/NVIDIA hardware respectively. Use the
MAYA_OPENCL_DEFORMER_MIN_VERTS environment variable to change the threshold. Setting the
value to 0 sends all meshes connected to supported deformation chains to the GPU.

• Deformers with more than one input/output geometry If a deformer is connected to more than
one geometry and any of them cannot run on the GPU then they will all be forced to run on the
CPU.

• Animated Topology. If your scene animates the number of mesh edges, vertices, and/or faces
during playback, corresponding deformation chains are removed from the GPU deformation path.

• Maya Catmull‐Clark SmoothMesh Preview is used. Wehave included acceleration for OpenSubDiv
(OSD)‐based smooth mesh preview, however there is no support for Maya’s legacy Catmull‐Clark.
To take advantage ofOSDOpenCL acceleration, selectOpenSubDiv Catmull‐Clark as the subdivision
method and make sure that OpenCL Acceleration is selected in the OpenSubDiv controls.

• Unsupported streams are found. Depending on which drawingmode you select for your geometry
(for example, shrunken faces, hedge‐hog normals, and so on) and the material assigned, Maya
must allocate and send different streams of data to the graphics card. Since we have focused our
efforts on common settings used in production, GPU override does not currently handle all stream
combinations. If meshes fail to accelerate due to unsupported streams, change display modes
and/or update the geometry material.

• Back face culling is enabled.

• Driver‐related issues. We are aware of various hardware issues related to driver support/stability
for OpenCL. TomaximizeMaya’s stability, we have disabled GPU Override in the cases that will lead
to problems. We expect to continue to eliminate restrictions in the future and are actively working
with hardware vendors to address detected driver problems.

You can also increase support for new custom/proprietary deformers by using new API extensions (refer
to Custom GPU Deformers for details).

If you enable GPU Override and the HUD reports Enabled (0 k), this indicates that no deformations are
happening on the GPU. There could be several reasons for this, such as those mentioned above.

To troubleshoot factors that limit the use of GPU override for your particular scene, use the deformerEval‐
uator command. Supported options include:

Command What does it do?

deformerEvaluator Prints the chain or each selected node is not supported.
deformerEvaluator ‐chains Prints all active deformation chains.
deformerEvaluator ‐meshes Prints a chain for each mesh or a reason if it is not supported.

2026 23

https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/deformerEvaluator.html
https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

Dynamics Evaluator

Starting in Maya 2017, the dynamics evaluator fully supports parallel evaluation of scenes with Nucleus
(nCloth, nHair, nParticles), Bullet, and Bifrost dynamics. Legacy dynamics nodes (for example, particles,
fluids) remain unsupported. If the dynamics evaluator finds unsupported node types in the EG, Maya will
revert to DG‐based evaluation. The dynamics evaluator also manages the tricky computation necessary
for correct scene evaluation. This is one of the ways custom evaluators can be used to change Maya’s
default evaluation behavior.

The dynamics evaluator supports several configuration flags to control its behavior.

Flag What does it do?

disablingNodes specifies the set of nodes that will force the dynamics evaluator to
disable the EM. Valid values are: legacy2016, unsupported, and
none.

handledNodes specifies the set of nodes that are going to be captured by the
dynamics evaluator and scheduled in clusters that it will manage.
Valid values are: dynamics and none.

action specifies how the dynamics evaluator will handle its nodes. Valid
values are: none, evaluate, and freeze.

In Maya 2017, the default configuration corresponds to:

cmds.evaluator(name="dynamics", c="disablingNodes=unsupported")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=evaluate")

where unsupported (that is, blacklisted) nodes are:

• collisionModel
• dynController
• dynGlobals
• dynHolder
• fluidEmitter
• fluidShape
• membrane
• particle (unless also a nBase)
• rigidNode
• rigidSolver
• spring
• nodes derived from the above

2026 24

Using Parallel Maya Custom Evaluators

This configuration disables evaluation if any unsupported nodes are encountered, and performs evalua‐
tion for the other handled nodes in the scene.

To revert to Maya 2016 / 2016 Extension 2 behavior, use the configuration:

cmds.evaluator(name="dynamics", c="disablingNodes=legacy2016")
cmds.evaluator(name="dynamics", c="handledNodes=none")
cmds.evaluator(name="dynamics", c="action=none")

where unsupported (that is, blacklisted) nodes are:

• field
• fluidShape
• geoConnector
• nucleus
• particle
• pointEmitter
• rigidSolver
• rigidBody
• nodes derived from the above

Tip. To get a list of nodes that cause the dynamics evaluator to disable the EM in its present
configuration, use the following command:

cmds.evaluator(name="dynamics", valueName="disabledNodes", query=True)

You can configure the dynamics evaluator to ignore unsupported nodes. If you want to try Parallel evalu‐
ation on a scene where it is disabled because of unsupported node types, use the following commands:

cmds.evaluator(name="dynamics", c="disablingNodes=none")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=evaluate")

Note: Using the dynamics evaluator on unsupported nodes may cause evaluation problems and/or ap‐
plication crashes; this is unsupported behavior. Proceed with caution.

2026 25

Using Parallel Maya Custom Evaluators

Tip. If you want the dynamics evaluator to skip evaluation of all dynamics nodes in the scene, use
the following commands:

cmds.evaluator(name="dynamics", c="disablingNodes=unsupported")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=freeze")

This can be useful to quickly disable dynamics when the simulation impacts animation perfor‐
mance.

Dynamics simulation results are very sensitive to evaluation order, which may differ between DG and EM‐
based evaluation. Even for DG‐based evaluation, evaluation order may depend on multiple factors. For
example, in DG‐mode when rendering simulation results to the Viewport, the evaluation order may be
different than when simulation is performed in ‘headless mode’. Though EM‐based evaluation results are
not guaranteed to be identical to DG‐based, evaluation order is consistent; once the evaluation order is
scheduled by the EM, it will remain consistent regardless of whether results are rendered or Maya is used
in batch. This same principle applies to non‐dynamics nodes that are order‐dependent.

Reference Evaluator

When a reference is unloaded it leaves several nodes in the scene representing reference edits to pre‐
serve. Though these nodes may inherit animation from upstream nodes, they do not contribute to what
is rendered and can be safely ignored during evaluation. The reference evaluator ensures all such nodes
are skipped during evaluation.

Invisibility Evaluator

Toggling scene object visibility is a critical artist workflow used to reduce visual clutter and accelerate
performance. To bring this workflow to parallel evaluation, Maya 2017 and above includes the invisibility
evaluator, whose goal is to skip evaluation of any node that does not contribute to a visible object.

The invisibility evaluator will skip evaluation of DAG nodes meeting any of the below criteria:

• visibility attribute is false.
• intermediateObject attribute is true.
• overrideEnabled attribute is true and overrideVisibility attribute is false.
• node belongs to a display layer whose enabled attribute is true and visibility attribute is false.
• every instance path contains at least one node for which one of the above statements are true.

2026 26

Using Parallel Maya Custom Evaluators

As of Maya 2018, the invisibility evaluator supports the isolate select method of hiding objects. If
there is only a single Viewport, and it has one or more objects isolated, then all of the other, unrelated
objects are considered invisible by the evaluator.

There is also support in Maya (2018 and up) for the animated attribute on expression nodes. When this
attribute is set to 1, the expression node is not skipped by the invisibility evaluator, even if only invisible
objects are connected to it.

Note: The default value of the animated attribute is 1, so in an expression‐heavy scene you may
see a slowdown from Maya 2017 to Maya 2018. To restore performance, run the script below to
disable this attribute on all expression nodes. (It is only required when the expression has some
sort of side‐effect external to the connections, such as printing a message or checking a cache file
size.)

for node in cmds.ls(type='expression'):
cmds.setAttr('{}.animated'.format(node), 0)

Tip: The invisibility evaluator is off by default in Maya 2017. Use the Evaluation Toolkit or this:

cmds.evaluator(enable=True, name='invisibility')

to enable the evaluator.

The invisibility evaluator only considers static visibility; nodes with animated visibility are still evaluated,
even if nodes meet the above criteria. If nodes are in a cycle, all cycle nodes must be considered invisible
for evaluation to be skipped. Lastly, if a node is instanced and has at least one visible path upward, then
all upward paths will be evaluated.

Tip: The invisibility evaluator determines visibility solely from the node’s visibility state; if your UI
or plug‐in code requires invisible nodes to evaluate, do not use the invisibility evaluator.

Partitioning and Scheduling Modes

Before Maya 2023, the invisibility evaluator was setting up its optimizations at Partitioning time. In this
mode, when the Evaluation Graph is partitioned, the invisibility evaluator checks the visibility state and

2026 27

Using Parallel Maya Custom Evaluators

grabs any node that is invisible or only affecting invisible nodes. These nodes will not be evaluated in
following scene evaluations, since they do not contribute to any visible content.

Performing this optimization at Partitioning time has the drawback that anytime visibility information
changes, for example from an artist showing or hiding parts of the scene, the graph needs to be reparti‐
tioned. This operation can be costly with complex scenes and lead to perceivable lags in the workflow.

Maya 2023 introduced a new invisibility evaluator mode to address this: the Scheduling Mode. This
mode can be set from the Evaluation Toolkit. In this mode, visibility‐based optimizations are performed
dynamically, without requiring a full repartitioning. When visibility state changes, some processing will
happen at the next evaluation, but the overhead is considerably smaller than a full partitioning, resulting
in a much smoother workflow.

Because of the more aggressive nature of the Partitioning Mode, which grabs nodes early and prevents
them from being accessible to other custom evaluators, there are instances where playback performance
is faster in the Partitioning Mode than in the Scheduling Mode. The Scheduling Mode, by its dynamic
nature, must let the other custom evaluators set themselves up in case of a dynamic visibility change that
would require those evaluators to do their work without repartitioning. As a result, due to the interaction
with other custom evaluators which might grab too much, the Scheduling Mode might not be able to
prevent as much evaluation as the Partitioning Mode. Therefore, there may be a trade‐off between the
more responsive visibility change workflows provided by the Scheduling Mode and the potentially better
playback performance provided by the Partitioning Mode.

Frozen Evaluator

The frozen evaluator allows users to tag EG subsections as not needing evaluation. It enhances the frozen
attribute by propagating the frozen state automatically to related nodes, according to the rules defined by
the evaluator’s configuration. It should only be used by those comfortable with the concepts of connec‐
tion and propagation in the DAG and Evaluation Graph. Many users may prefer the invisibility evaluator;
it is a simpler interface/workflow for most cases.

The Frozen Attribute

The frozen attribute has existed on nodes since Maya 2016. It can be used to control whether node is
evaluated in Serial or Parallel EM evaluation modes. In principle, when the frozen attribute is set, the EM
skips evaluation of that node. However, there are additional nuances that impact whether or not this is
the case:

• Everything downstream of frozen nodes is still evaluated, unless they also have the frozen attribute
set, or they are affected by the frozen evaluator as described below.

• Some nodes may perform optimizations that leave their outputs invalid and susceptible to change
once evaluated. Freezing these nodes may have unexpected results as nothing preserves the old

2026 28

Using Parallel Maya Custom Evaluators

values. See the documentation on the nodeState attribute for ways to specifically enable caching
for nodes you want to freeze.

• You may have inconsistent per‐frame results when the frozen attribute is animated. The node
“freezes” when the attribute is set, so if you jump from frame to frame, your object state reflects
the last time you visited in an unfrozen state. Playback is only consistent if your object is not frozen
from the first frame.

• When the frozen node is in the middle of a cycle, it is not respected. Cycles evaluate using the pull
model, which does not respect the frozen attribute value.

• Custom evaluators may or may not respect the frozen attribute value. Take this into consideration
as part of their implementation.

Warning: All the frozen attribute does is skip evaluation, nothing is done to preserve the current
node data during file store; if you load a file with frozen attributes set, the nodes may not have
the same data as when you stored them.

Operation

The evaluation manager does not evaluate any node that has its frozen attribute set to True, referred to
here as explicitly frozen nodes. An implicitly frozen node is one that is disabled because of the operation
of the frozen evaluator, but whose frozen attribute is not set to True. When the frozen evaluator is en‐
abled it will also prevent evaluation of related nodes according to the rules corresponding to the enabled
options, in any combination.

The frozen evaluator operates in three phases. In phase one, it gathers together all of the nodes flagged
by the invisible and displayLayers options as being marked for freezing. In phase two, it propagates the
freezing state outwards through the evaluation graph according to the values of the downstream and
upstream options.

Phase 1: Gathering The Nodes

The list of nodes for propagation is gathered as follows:

• The nodes with their frozen attribute set to True are found. (Note: This does not include those
whose frozen attribute is animated. They are handled via Phase 3.)

• If the invisible option is True then any node that is explicitly frozen and invisible (directly, or if its
parents are all invisible) will have all of its DAG descendants added to the list of nodes for Phase 2.

• If the displayLayers option is True then any node that is a member of a display layer that is explicitly
frozen, enabled, and invisible will have it, and all its DAG descendants added to the list of nodes
for Phase 2.

2026 29

Using Parallel Maya Custom Evaluators

Phase 2: Propagating The Freezing

The list gathered by Phase 1 will all be implicitly frozen. In addition, the downstream and upstream op‐
tions may implicitly freeze nodes related to them. For each of the nodes gathered so far, the evaluation
graph will be traversed in both directions, implicitly freezing nodes encountered according to the follow‐
ing options:

• downstream option value

– “none” : No further nodes downstream in the EG will be implicitly frozen
– “safe” : Nodes downstream in the EG will be implicitly frozen only if every one of their up‐

stream nodes has already been implicitly or explicitly frozen
– “force” : Nodes downstream in the EG will be implicitly frozen

• upstream option value

– “none” : No further nodes upstream in the EG will be implicitly frozen
– “safe” : Nodes upstream in the EG will be implicitly frozen only if every one of their down‐

stream nodes has already been implicitly or explicitly frozen
– “force” : Nodes upstream in the EG will be implicitly frozen

Phase 3: Runtime Freezing

If a node has its frozen or visibility states animated, the evaluator still has to schedule it. The runtime
freezing can still assist at this point in preventing unnecessary evaluation. Normally any explicitly frozen
node will have its evaluation skipped, with all other nodes evaluating normally. When the runtime option
is enabled, after skipping the evaluation of an explicitly frozen node no further scheduling of downstream
nodes will occur. As a result, if the downstream nodes have no other unfrozen inputs they will also be
skipped.

Note: The runtime option does not really modify the evaluator operation, it modifies the scheduling of
nodes for evaluation. You will not see nodes affected by this option in the evaluator information (for
example, the output from cmds.evaluator(query=True, clusters=True, name='frozen'))

Setting Options

Options can be set for the frozen evaluator in one of two ways:

• Accessing them through the Evaluation Toolkit

• Using the evaluator command’s configuration option:

python cmds.evaluator(name='frozen', configuration='KEY=VALUE')

2026 30

Using Parallel Maya Custom Evaluators

Legal KEY and VALUE values are below, and correspond to the options as described above:

KEY VALUES DEFAULT

runtime True/False False
invisible True/False False
displayLayers True/False False
downstream ‘off’/‘safe’/‘force’ ‘off’
upstream ‘off’/‘safe’/‘force’ ‘off’

Unlike most evaluators the frozen evaluator options are stored in user preferences and persists between
sessions.

Limitations

• You must set at least one frozen attribute to True to instruct the frozen evaluator to shut off
evaluation on affected nodes. The most practical use of this would be on a display layer so that
nodes can be implicitly frozen as a group.

• If the frozen attribute, or any of the attributes used to define related implicit nodes for freezing
(for example, visibility) are animated then the evaluator will not remove them from evalua‐
tion. They will still be scheduled and only the runtime option will help in avoiding unnecessary
evaluation.

• Cycle members are not frozen by the evaluator unless every input to the cycle is frozen. This is a de‐
sign choice to reflect that as cycles evaluate as a unit, it is impossible to freeze individual members
of a cycle. It must be all or nothing.

Curve Manager Evaluator

The curve manager evaluator can be used to include additional nodes in the Evaluation Graph, which can
have two main benefits:

• The additional nodes can be manipulated using parallel evaluation and GPU deformation, which
can result in higher responsiveness during interactive manipulation.

• Fewer Evaluation Graph rebuilds can result, since static nodes can already be included in the Eval‐
uation Graph.

To achieve those benefits efficiently, the curve manager evaluator performs two main tasks:

• During Evaluation Graph construction, it triggers dirty propagation from extra nodes so they are
included in the graph construction process and the resulting Evaluation Graph.

2026 31

Using Parallel Maya Custom Evaluators

• During scene evaluation, it handles the evaluation of some of those extra nodes to maintain per‐
formance, since they do not really need to be evaluated.

To illustrate this result, let’s compare the three following situations.

1. A scene where all controllers have a single key (that is, static animation curves). Since the resulting
animation curves are constant, they are considered static and are not included in the Evaluation
Graph. Playback will have nothing to evaluate.

2. A scene where all controllers have keys of different values (that is, animated curves). Therefore,
they will be included in the Evaluation Graph and playback will evaluate everything.

3. A scene where all controllers have a single key (that is, static animation curves), but where the
curve manager evaluator is used to prepopulate the Evaluation Graph with those static curves.

The third situation is where we are trying to take advantage of the curve manager evaluator to have an
Evaluation Graph that is already set up to allow parallel evaluation when the controllers will be manipu‐
lated.

The following table summarizes the differences between the situations and the compromises provided by
the curve manager evaluator.

Situation # of nodes in EG Playback EMManip Rebuild when keying

Static curves + curve
manager off

Lowest Fastest No Yes

Animated curves Highest Slowest Yes No
Static curves + curve
manager on

Highest Middle Yes No

In summary, the curve manager evaluator benefits from having the Evaluation Graph already populated
with nodes so it is ready to evaluate interactive manipulation, while paying as little of a cost as possible
for those constant nodes during playback.

It can be activated using:

cmds.evaluator(
name="curveManager",
enable=True
)

cmds.evaluator(
name="curveManager",
configuration="forceAnimatedCurves=keyed"
)

The available values for forceAnimatedCurves are:

2026 32

Using Parallel Maya Custom Evaluators

• “none” : No curve will be forced in the evaluation graph.
• “controller” : Curves connected to controller nodes will be forced in the evaluation graph. This is

basically a generalization of the controller concept.
• “keyed” : Keyed static curves, that is, curves with a single key or multiple keys with the same value,

will be forced in the evaluation graph.
• “all” : All curves are forced in the evaluation graph.

Another option, forceAnimatedNodes, can be used:

• “none” : No node will be forced in the evaluation graph.
• “forcedAnimatedAttribute” : Nodes with the forced‐animated attribute set to true will be forced in

the evaluation graph.

This allows tagging nodes to be added with a boolean dynamic attribute. By default, the name of this
attribute is forcedAnimated. If it is present on a node and set to true, the node is added to the graph.
The name of the attribute can be controlled by using the “forcedAnimatedAttributeName” option.

By default, the curve manager evaluator tries to skip the evaluation of the static parts of the graph. For
debugging or performance measurement purposes, this optimization can be disabled:

cmds.evaluator(
name="curveManager",
configuration="skipStaticEvaluation=disable"
)

Other Evaluators

In addition to evaluators described above, additional evaluators exist for specialized tasks:

Evaluator What does it do?

cache Constitutes the foundation of Cached Playback. See the Maya
Cached Playback whitepaper for more information.

timeEditorCurveEvaluator Finds all paramCurves connected to time editor nodes and puts
them into a cluster that will prevent them from evaluating at the
current time, since the time editor will manage their evaluation.

ikSystem Automatically disables the EM when a multi‐chain solver is
present in the EG. For regular IK chains it will perform any lazy
update prior to parallel execution.

2026 33

https://damassets.autodesk.net/content/dam/autodesk/www/html/maya-cached-playback/2026/MayaCachedPlaybackWhitePaper.html#overview
https://damassets.autodesk.net/content/dam/autodesk/www/html/maya-cached-playback/2026/MayaCachedPlaybackWhitePaper.html#overview

Using Parallel Maya API Extensions

Evaluator What does it do?

disabling Automatically disables the EM if user‐specified nodes are
present in the EG. This evaluator is used for troubleshooting
purposes. It allows Maya to keep working stably until issues with
problem nodes can be addressed.

hik Handles the evaluation of HumanIK characters in an efficient
way by recognizing HumanIK common connection patterns.

cycle Unrolls cycle clusters to augment the opportunity for parallelism
and improve performance. Likely gives the best performance
improvements when large cycle clusters are present in the scene.
Prototype, work in progress.

transformFlattening Consolidates deep transform hierarchies containing animated
parents and static children, leading to faster evaluation.
Consolidation takes a snapshot of the relative parent/child
transformations, allowing concurrent evaluation of downstream
nodes.

pruneRoots We found that scenes with several thousand paramCurves
become bogged down because of scheduling overhead from
resulting EG nodes and lose any potential gain from increased
parallelism. To handle this situation, special clusters are created
to group paramCurves into a small number of evaluation tasks,
thus reducing overhead.

Custom evaluator names are subject to change as we introduce new evaluators and expand these func‐
tionalities.

Evaluator Conflicts

Sometimes, multiple evaluators will want to “claim responsibility” for the same node(s). This can result
in conflict, and negatively impact performance. To avoid these conflicts, upon registration each evalua‐
tor is associated with a priority; nodes are assigned to the evaluator with the highest priority. Internal
evaluators have been ordered to prioritize correctness and stability over speed.

API Extensions

Several API extensions and tools have been added to help you make the most of the EM in your pipeline.
This section reviews API extensions for Parallel Evaluation, Custom GPU Deformers, Custom Evaluator
API, VP2 Integration and Profiling Plug‐ins.

2026 34

Using Parallel Maya API Extensions

Parallel Evaluation

If your plug‐in plays by the DG rules, you will not need many changes to make the plug‐in work in Parallel
mode. Porting your plug‐in so that it works in Parallel may be as simple as recompiling it against the latest
version of OpenMaya!

If the EM generates different results than DG‐based evaluation, make sure that your plug‐in:

• Overrides MPxNode::compute(). This is especially true of classes extending MPxTransformwhich
previously relied on asMatrix(). See the rockingTransform SDK sample. For classes deriving from
MPxDeformerNode and MPxGeometryFilter, override the deform()method.

• Handles requests for evaluation at all levels of the plug tree. While the DG can request plug values
at any level, the EM always requests the root plug. For example, for plug N.gp[0].p[1] your com‐
pute() method must handle requests for evaluation of N.gp, N.gp[0], N.gp[0].p, and N.gp[0].p[1].

If your plug‐in relies on custom dependency management, you need to use new API extensions to
ensure correct results. As described earlier, the EG is built using the legacy dirty‐propagation mech‐
anism. Therefore, optimizations used to limit dirty propagation during DG evaluation, such as those
found in MPxNode::setDependentsDirty, may introduce errors in the EG. Use MEvaluationMan‐
ager::graphConstructionActive() to detect if this is occurring.

There are new virtual methods you will want to consider implementing:

• MPxNode::preEvaluation. To avoid performing expensive calculations each time the evaluation
method MPxNode::compute() is called, one strategy plug‐in authors use is to store results from
previous evaluations and then rely onMPxNode::setDependentsDirty to trigger re‐computation.
As discussed previously, once the EG has been built, dirty propagation is disabled and the EG is re‐
used. Threrefore, any custom logic in your plug‐in that depends on setDependentsDirty no longer
applies. MPxNode::preEvaluation allows your plug‐in to determine which plugs/attributes are
dirty and if any action is needed. Use the new MEvaluationNode class to determine what has
been dirtied. Refer to the simpleEvaluationNode devkit example for an illustration of how to use
MPxNode::preEvaluation.

• MPxNode::postEvaluation. Until now, it was difficult to determine at which point all processing
for a node instance was complete. Users sometimes resorted to complex bookkeeping/callback
schemes to detect this situation and perform additional work, such as custom rendering. This
mechanism was cumbersome and error‐prone. Once all computations have been performed on a
specific node instance, a new method, MPxNode::postEvaluation, is called. Since this method
is called from a worker thread, it performs calculations for downstream graph operations without
blocking other Maya processing tasks of non‐dependent nodes. See the simpleEvaluationDraw
devkit example to understand how to use this method. If you run this example in regular evalua‐
tion,Maya slows down, since evaluation is blockedwhenever expensive calculations are performed.

2026 35

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_manager_html#aedb4df14a76f10672127a768071670f5
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_manager_html#aedb4df14a76f10672127a768071670f5
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_simple_evaluation_node_2simple_evaluation_node_8cpp_example_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_simple_evaluation_draw_2simple_evaluation_draw_8cpp_example_html

Using Parallel Maya API Extensions

When you run in Parallel Evaluation Mode, a worker thread calls the postEvaluation method and
prepares data for subsequent drawing operations. When testing, you will see higher frame rates
in Parallel evaluation versus regular or Serial evaluation. Please note that code in postEvaluation
should be thread‐safe.

Other recommended best practices include:

• Avoid storing state in static variables. Store node state/settings in attributes. This has the addi‐
tional benefit of automatically saving/restoring the plug‐in state when Maya files are written/read.

• Node computation should not have any dependencies beyond input values. Maya nodes should
be like functions. Output values should be computed from input state and node‐specific internal
logic. Your node should never walk the graph or try to circumvent the DG.

Skipping Evaluation

A new method was added in Maya 2022 to provide more control over which attributes get automatically
computed by the Evaluation Manager.

By default, the Evaluation Manager evaluates all attributes that are touched by dirty propagation during
the construction of the Evaluation Graph, i.e. all attributes that are affected by the time, or animated.
However, some attributes might not actually be needed by the Viewport. For example, a particle shape
node might be able to compute a mesh representation of the particle cloud which might not always be
needed. However, if this attribute is dependent on animated input, it is always computed by default.

The MEvaluationNode::skipEvaluation() method provides a way to control this behavior by requesting
skipping the computation of an attribute. When this request succeeds, the Evaluation Manager simply
skips the evaluation of this attribute and leaves it dirty, so it can be properly evaluated if pulled on later.

The request is not guaranteed to succeed, as the safety of skipping the evaluation of a given attribute de‐
pends on how it is connected and used. The EvaluationManagermakes sure no concurrent pull evaluation
can happen on the same node by preparing everything required for downstream nodes. MEvaluationN‐
ode::skipEvaluation() relaxes this constraint. Note that this request is always rejected for attributes with
two or more downstream dependencies, as they could be pulling concurrently on the skipped attribute,
potentially resulting in a race condition.

This method must be called during MPxNode::preEvaluation and there are two ways to use it:

• allowSingleDownstreamDependency=false: This is the safest way, as it only allows skipping
evaluation of an attribute if there are no downstream connections to this attribute. As soon as
there is a single downstream dependency for this attribute, the request for skipping is ignored,
because it is assumed that the downstream node(s) will eventually pull on the attribute, and other
computations might be happening at the same time in the node. Note that this is the safe option
to choose if the node can mark more than one attribute for skipping, as leaving multiple attributes

2026 36

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_node_html#aa8319e8d242c2a6bd5ecac159b665d02
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_node_html#aa8319e8d242c2a6bd5ecac159b665d02
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_node_html#aa8319e8d242c2a6bd5ecac159b665d02

Using Parallel Maya API Extensions

unevaluated on the same node could result in concurrent pull evaluation, even if each attribute
only has a single downstream dependency.

• allowSingleDownstreamDependency=true: Thisway allows skipping an attribute even if there is
one (and not more) downstream dependency. It is presumably safe if only one other node can pull
on the attribute. Therefore, even if the Evaluation Manager does not evaluate it, pull evaluation
from a single downstream node can be performed safely. Note that this is only true if the attribute
is the only one skipped in the node, which is why allowing single downstreamdependency is usually
only set to true when there is a single skippable attribute in the node.

The state of whether or not the attribute is actually marked to be skipped can be queried usingMEvalu‐
ationNode::skippingEvaluation().

Custom GPU Deformers

To make GPU Override work on scenes containing custom deformers, Maya provides new API classes that
allow the creation of fast OpenCL deformer back‐ends.

Though you still need to have a CPU implementation for the timeswhen it is not possible to target deforma‐
tions on the GPU (see GPU Override), you can augment this with an alternate deformer implementation
inheriting from MPxGPUDeformer. This applies to your own nodes as well as to standard Maya nodes.

The GPU implementation will need to:

• Declare when it is valid to use the GPU‐based backend (for example, youmaywant to limit you GPU
version to cases where various attributes are fixed, omit usage for specific attribute values, and so
on)

• Extract MDataBlock input values and upload values to the GPU
• Define and call the OpenCL kernel to perform needed computation
• Register itself with the MGPUDeformerRegistry system. This will tell the system which deformers

you are claiming responsibility for.

When you have done this, do not forget to load your plug‐in at startup. Two working devkit examples
(offsetNode and identityNode) have been provided to get you started.

2026 37

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_node_html#accb85777ab76fdc0a38b7536bc97915a
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_evaluation_node_html#accb85777ab76fdc0a38b7536bc97915a
https://www.khronos.org/opencl/
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_g_p_u_deformer_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_g_p_u_deformer_registry_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_offset_node_2offset_node_8cpp_example_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_identity_node_2identity_node_8cpp_example_html

Using Parallel Maya API Extensions

Tip. To get a sense for the maximum speed increase you can expect by providing a GPU backend
for a specific deformer, tellMaya to treat specific nodes as passthrough. Here’s an example applied
to polySoftEdge:

cmds.GPUBuiltInDeformerControl(
name="polySoftEdge",
inputAttribute="inputPolymesh",
outputAttribute="output",
passthrough=True
)

Although results will be incorrect, this test will confirm if it is worth investing time implementing
an OpenCL version of your node.

Fan‐In Evaluation

Fan‐In refers to multiple GPU deformation chains “fanning in” to a single deformer node. A deformer
that supports fan‐in evaluation is one that can take the results of two or more GPU deformation chains as
input. For example, a blendshape deformer can have both animated input geometry and animated input
targets, each with their own upstream deformation chains.

Fan‐In evaluation support for custom deformers is available through the API. In order to access upstream
deformation data, there are two things your custom deformer must do:

• In theMGPUDeformerRegistrationInfo class for the node, implement the inputMeshAttributes (plu‐
ral) rather than inputMeshAttribute (singular) method. Within that method, append any input
mesh attributes to inputAttributes.

• Use the most recent signature for MPxGPUDefomer::evaluate() which includes the MPlugArray
parameter inputPlugs. The inputPlugs array will contain the main input geometry plug and any
additional plugs to attributes specified above.

The devkit example plugin basicMorphNode has been provided to demonstrate fan‐in support.

Custom Evaluator API

API classes and methods introduced in Maya 2017 let you define custom evaluators that allow control
over how the Maya scene is computed.

To create a custom evaluator, you must define a plug‐in that extends the MPxCustomEvaluator class.
The key class methods to override are described below.

2026 38

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_g_p_u_deformer_registration_info_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_g_p_u_deformer_registration_info_html#a6595070483ca7ff251658d710333d4e3
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_g_p_u_deformer_registration_info_html#af2b81cb6c5f4e81488afe71b317e9d79
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_g_p_u_deformer_html#ae9acc9c663a1902772bc1cdf996e2f11
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_basic_morph_node_2basic_morph_node_8cpp_example_html

Using Parallel Maya API Extensions

The Basics

Before you can use the new evaluators, they must be registered:

MStatus registerEvaluator(
// name of the evaluator
const char * evaluatorName,

// evaluator priority. Higher priority evaluators get 'first‐dibs'
unsigned int uniquePriority,

// function pointer to method returning a new evaluator instance
MCreatorFunction creatorFunction

)

and deregistered:

MStatus deregisterEvaluator(
// name of the evaluator
const char* evaluatorName

)

using MFnPluginmethods. These functions should be used during plug‐in initialization:

MStatus initializePlugin(MObject obj)
{

MFnPlugin plugin(obj, PLUGIN_COMPANY, "3.0", "Any");
MStatus status = plugin.registerEvaluator(

"SimpleEvaluator",
40,
simpleEvaluator::creator);

if (!status)
status.perror("registerEvaluator");

return status;
}

and uninitialization:

MStatus uninitializePlugin(MObject obj)
{

MFnPlugin plugin(obj);

2026 39

Using Parallel Maya API Extensions

MStatus status = plugin.deregisterEvaluator("SimpleEvaluator");
if (!status)

status.perror("deregisterEvaluator");
return status;

}

as illustrated above.

Once the plug‐in has been loaded, use Python or MEL commands to enable:

import maya.cmds as cmds
cmds.evaluator(enable=True, name='SimpleEvaluator')

Result: False

disable:

cmds.evaluator(enable=False, name='SimpleEvaluator')

Result: True

and query information about evaluators:

print(cmds.evaluator(query=True))

[u'invisibility', ... u'SimpleEvaluator']

NOTE: The evaluator command returns the previous state of the evaluator (as described in the
documentation). This command fails if the evaluator cannot be enabled.

To view the priorities of all loaded evaluators, use the priority flag on the evaluator command:

for evaluatorName in cmds.evaluator():
print("%‐25s : %d" % (

evaluatorName,
cmds.evaluator(name=evaluatorName, query=True, priority=True)))

invisibility : 1003000
frozen : 1002000

2026 40

Using Parallel Maya API Extensions

curveManager : 1001000
cache : 1000000
timeEditorCurveEvaluator : 104000
dynamics : 103000
ikSystem : 102000
disabling : 100000
hik : 7000
reference : 6000
deformer : 5000
cycle : 4000
transformFlattening : 3000
pruneRoots : 1000
SimpleEvaluator : 50

API Reference

This section provides more detail on different MPxCustomEvaluator API methods.

Claiming clusters

During EG partitioning, each evaluator gets to claim evaluation nodes, using the:

bool MPxCustomEvaluator::markIfSupported(const MEvaluationNode* node)

method. You can safely cause evaluation in this call but doing so increases partitioning and evaluationtime.
The developer can decide whether evaluation is required (call .inputValue / .inputArrayValue), or
the previously‐evaluated datablock values can be re‐used (call .outputValue / .outputArrayValue).
If multiple evaluators mark a specific node, which evaluator is assigned a node at run‐time is determined
by priority. For example, if you have two evaluators, A and B, mark node C of interest, if evaluator A has
priority 100, and evaluator B has priority 10, during graph partitioning, evaluator Awill get the opportunity
to grab node C before evaluator B. Evaluators should not try to grab a node already grabbed by a higher‐
priority evaluator.

Scheduling

To determine if an evaluator can evaluate clusters in Parallel, use:

MCustomEvaluatorClusterNode::SchedulingType schedulingType(
// a disjoint set of nodes on a custom evaluator layer
const MCustomEvaluatorClusterNode * cluster

)

2026 41

Using Parallel Maya API Extensions

where:

SchedulingType Details

kParallel any number of nodes of the same type can run in parallel
kSerial all nodes of this type should be chained and executed sequentially
kGloballySerial only one node of this type can be run at a time
kUntrusted nothing else can execute with this node since we cannot predict what will

happen

During EG scheduling:

bool MPxCustomEvaluator::clusterInitialize(
// evaluation cluster node
const MCustomEvaluatorClusterNode* cluster

)

can be used to perform the required cluster preparation. The pointer to the cluster remains valid until
graph invalidation, such as when the scene topology changes.

Before the cluster is deleted,

void MPxCustomEvaluator::clusterTerminate(
// the cluster to terminate
const MCustomEvaluatorClusterNode* cluster

)

is called to allow needed cleanup, for example, releasing evaluator‐specific resources. It is up to the
custom evaluator to decide if it wants to clear its internal representation.

Execution

There are 3 main methods used during execution.

Prior to graph execution, the EM calls:

void MPxCustomEvaluator::preEvaluate(
// the graph about to be evaluated
const MEvaluationGraph* graph

)

during execution, the EM calls:

2026 42

Using Parallel Maya API Extensions

void MPxCustomEvaluator::clusterEvaluate(
// the cluster to be evaluated
const MCustomEvaluatorClusterNode* cluster

)

Youwill only receive clusters that belong to this evaluator. This call always happens after clusterInitialize
and never after clusterTerminate. Finally,

void MPxCustomEvaluator::postEvaluate(
// the graph that was evaluated
const MEvaluationGraph* graph

)

is called just after a graph evaluation is finished.

SimpleEvaluator API Example

Now that we have reviewed relevant API methods, the following example limits evaluation by caching
previous results. simpleEvaluator assumes the existence of scene nodes that tag controller nodes
with animation and works as follows:

In clusterInitialize, we build a list of translation and rotation attribute plugs.

// Build a list of plugs by scanning the scene for controller nodes.
// This gets called during scheduling.
bool simpleEvaluator::clusterInitialize(

const MCustomEvaluatorClusterNode* cluster
)

{
if (fControllerPlugs.length() == 0)

buildPlugListWithControllerTag();
return true;

}

// Scan the scene for any controller nodes, populating the plug list.
// Called during the scheduling phase
void simpleEvaluator::buildPlugListWithControllerTag()
{

MStatus stat;
MItDependencyNodes dgIter(MFn::kControllerTag, &stat);
if (stat != MS::kSuccess)

2026 43

Using Parallel Maya API Extensions

return;

const char* values[] = {
"translateX",
"translateY",
"translateZ",
"rotateX",
"rotateY",
"rotateZ"

};

for (; !dgIter.isDone(); dgIter.next())
{

MFnDependencyNode controllerTagNode(dgIter.thisNode(), &stat);
if (stat != MS::kSuccess)

continue;

MPlug currControllerTagPlug =
controllerTagNode.findPlug("controllerObject", &stat);

if (stat != MS::kSuccess)
continue;

// found controller tag node, now get its source controller
MPlugArray source;
bool retval = currControllerTagPlug.connectedTo(

source,
true /* asDst */,
false /* asSrc */,
&stat)

if ((retval == false) || (stat != MS::kSuccess))
continue;

// there should only be one source with the controller tag node
// as destination
MObject controllerNode = source[0].node(&stat);
if (stat != MS::kSuccess)

continue;

MFnDependencyNode currControllerNode(controllerNode, &stat);
if (stat != MS::kSuccess)

continue;

2026 44

Using Parallel Maya API Extensions

for (unsigned int j = 0; j < 6; j++)
{

MPlug currPlug = currControllerNode.findPlug(values[j], &stat);
if (stat == MS::kSuccess)

fControllerPlugs.append(currPlug);
else

std::cerr
<< "NO PLUG: "
<< currControllerNode.name().asChar()
<< "."
<< values[j]
<< std::endl;

}
}

}

Later, during preEvaluate, which is called per‐frame, a hash value is calculated based on the plug values
of the current frame.

void simpleEvaluator::preEvaluate(const MEvaluationGraph* graph)
{

buildHashValue();
}

void simpleEvaluator::buildHashValue()
{

unsigned int length = fControllerPlugs.length();
MStatus stat = MS::kSuccess;

for (unsigned int i = 0; i < length; i++)
{

float value = 0;
stat = fControllerPlugs[i].getValue(value);

if (stat == MS::kSuccess)
{

boost::hash_combine(fCurrentHashValue, value);
}
else
{

std::cerr
<< "NO VALUE: "

2026 45

Using Parallel Maya API Extensions

<< fControllerPlugs[i].name().asChar()
<< std::endl;

}
}

}

This value is compared with the previous frame’s hash in clusterEvaluate. If the hash is different, the
evaluation proceeds, otherwise we do nothing.

void simpleEvaluator::clusterEvaluate(
const MCustomEvaluatorClusterNode* cluster
)

{
if (fOldHashValue != fCurrentHashValue)

cluster‐>evaluate();
}

To make sure the hash value is up‐to‐date, the hash value is stored in postEvaluate.

void simpleEvaluator::postEvaluate(const MEvaluationGraph* graph)
{

fOldHashValue = fCurrentHashValue;
fCurrentHashValue = 0;

}

Finally, when the graph topology becomes invalid, we call clusterTerminate to clear the cached list of
plugs.

void simpleEvaluator::clusterTerminate(
const MCustomEvaluatorClusterNode* cluster
)

{
if (fControllerPlugs.length() > 0)

fControllerPlugs.clear();
}

Since simpleEvaluator claims control over the entire graph, markIfSupported returns true for all
nodes. Additionally, nothing special is done to alter the cluster’s scheduling behavior.

2026 46

Using Parallel Maya API Extensions

bool simpleEvaluator::markIfSupported(const MEvaluationNode* node)
{

return true;
}

MCustomEvaluatorClusterNode::SchedulingType
simpleEvaluator::schedulingType(const MCustomEvaluatorClusterNode* cluster)
{

return cluster‐>schedulingType();
}

See the provided simpleEvaluator devkit example for more details and complete source code.

Prune Evaluator API

New methods were added to MPxCustomEvaluator in Maya 2022 to control at runtime (i.e. without
repartitioning) execution of parts of the Evaluation Graph.

Thosemethods provide the API interface to prune the execution of the nodes claimed by a custom evalau‐
tor. If the execution of a node is pruned, then its downstream nodes will be pruned automatically since
the data they depend on will not have been computed. If an object is pruned, VP2 will not display the
object. If the plug‐in wants the pruned objects to show up in VP2 for some reason, it has to define the
environment variable MAYA_RENDERING_IF_PRUNED.

There are two specific methods for pruning execution:

• MPxCustomEvaluator::wantPruneExecution()
• MPxCustomEvaluator::pruneExecution(const MCustomEvaluatorClusterNode*
cluster)

The pruning process involves several phases:

• Phase 1: Claiming clusters : The claiming process in the partitioning phase (MPxCustomEvaluator::markIfSupported())
should include all the candidate nodes that might be pruned. A candidate is not guaranteed to
be pruned because that decision is made at every evaluation on the fly. The claiming process can
claim all the nodes to be pruned, but a more efficient way is to claim only the most upstream
nodes, i.e. anim curve nodes, and let the evaluation manager prune its downstream nodes.

• Phase 2: Enabling the pruning process : The pruning process is off by default and can be toggled on
by MPxCustomEvaluator::wantPruneExecution(). This method is called every time a cluster
is created for this evaluator during partitioning. If this is not overridden or returns false, pruning
runtime checking will not happen every frame, so execution is to happen all the time.

2026 47

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_simple_evaluator_2simple_evaluator_8cpp_example_html

Using Parallel Maya API Extensions

• Phase 3: Pruning process : If the pruning process is enabled, for each cluster created
by the custom evaluator MPxCustomEvaluator::pruneExecution() is called at each
evaluation to notify the evaluation manager if the given cluster should be pruned or not.
MPxCustomEvaluator::pruneExecution() is not called if MPxCustomEvaluator::wantPruneExecution()
returns false or is not overridden. If a cluster node is not pruned, the custom evaluator is respon‐
sible for managing its evaluation.

PruneEvaluator API Example

We provide a sample using the execution pruning API described above. It uses the concept of a PruneSet
as criteria to determine whether or not to prune execution. This is just an example of the custom logic
that could be used to prune execution.

See the provided evaluationPruningEvaluator devkit example for more details and complete source code.

VP2 Integration

Evaluation Manager Parallel Evaluation executes the Dependency Graph in parallel. Internally, Maya
nodes begin preparing render data for VP2 immediately after a node is evaluated, and before the rest
of the graph has finished evaluation. This is exposed to users as Evaluation Manager Parallel Update in
theMPxGeometryOverride API (this feature may also be referred to as “Direct Update”). Supporting Eval‐
uation Manager Parallel Update can significantly reduce time spent in Vp2BuildRenderLists and improve
overall scene performance.

The following profiler images were created from the same scene (100 footPrintNode_GeometryOverride
nodes with animated “size” attributes). In the first image Evaluation Manager Parallel Update is not
enabled, and a large amount of time is spent serially preparing draw data for each footPrint node in
Vp2BuildRenderLists.

2026 48

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_evaluation_pruning_evaluator_2evaluation_pruning_evaluator_8cpp_example_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html

Using Parallel Maya API Extensions

In the second image the footPrintNode_GeometryOverride has beenmodified to support EvaluationMan‐
ager Parallel Update. You can see that the long serial execution time in Vp2BuildRenderLists has been elim‐
inated. All the data marshalling for VP2 is occurring in parallel while the EvaluationManager is evaluating
the Dependency Graph.

2026 49

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html

Using Parallel Maya API Extensions

The footPrintNode_GeometryOverride example plug‐in provides a detailed example for you to create an
efficient MPxGeometryOverride plugin which supports Evaluation Manager Parallel Update and gives ex‐
cellent performance in VP2.

Supporting Evaluation Manager Direct Update adds some restrictions to which operations can safely
be performed from MPxGeometryOverride function calls. All MPxGeometryOverride functions (except
cleanUp() and the destructor) may be called from a worker thread in parallel with other Maya execution.
These methods must all be thread safe. An MPxGeometryOverride object is guaranteed to have at most
one of its member functions called at a time. If two different MPxGeometryOverride objects “A” and “B”
both require updating, then anymember function on “A” could be called at the same time as anymember
function on “B”.

Furthermore, because these methods may be called from a worker thread, direct access to the rendering
context is prohibited. MVertexBuffer and MIndexBuffer can still be used, but some of their features are
prohibited from use when in Evaluation Manager Parallel Update. Details about which features are safe
to use are provided in the documentation for MVertexBuffer and MIndexBuffer.

2026 50

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_vertex_buffer_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_index_buffer_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_vertex_buffer_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_h_w_render_1_1_m_index_buffer_html

Using Parallel Maya Profiling Your Scene

Tracking Topology

Evaluation Manager Parallel Update currently has the limitation that it can only be used on geometries
that do not have animated topology. The status of whether topology is animated or not needs to be
tracked from the geometry’s origin to its display shape.

If the nodes in the graph are built‐in nodes, Maya can know if an animated input will affect the output
geometry topology. Similarly, deformers (even custom ones derived from MPxDeformerNode), are as‐
sumed to simply deform their input in their output, keeping the same topology.

However, more generic nodes can also generate geometries. When a custom node is a MPxNode, Maya
cannot know whether an output geometry has animated topology. It therefore assumes the worst and
treats the topology as animated. While this approach is the safest, it can prevent optimizations such as
Evaluation Manager Parallel Update.

As of Maya 2019, a new API has been added to inform Maya about attributes that might not affect the
topology of an output geometry.

• The first step is to override the MPxNode::isTrackingTopology() method so that Maya can track
topology information for this node.

• The second step is the use the new version of theMPxNode::attributeAffects()method to inform
Maya that while the source attribute affects the output attribute, it does not affect its topology.

Using this new API helps Maya to know that it is safe to use Evaluation Manager Parallel Update and
benefit from its performance boost in more situations.

Profiling Plug‐ins

To visualize how long custom plug‐ins take in the new profiling tools (see Profiling Your Scene) you will
need to instrument your code. Maya provides C++, Python, and MEL interfaces for you to do this. Refer
to the Profiling using MEL or Python or the API technical docs for more details.

Profiling Your Scene

In the past, it could be challenging to understand where Maya was spending time. To remove the guess‐
work out of performance diagnosis, Maya includes a new integrated profiler that lets you see exactly how
long different tasks are taking.

Open the Profiler by selecting:

• Windows > General Editors > Profiler from the Maya menu
• Persp/Graph Layout from the Quick Layout buttons and choosing Panel Layout > Profiler.

2026 51

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_deformer_node_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_node_html
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_node_html#a9e054d22b4addd21d5b92c969a7a1ee6
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=MAYA_API_REF_cpp_ref_class_m_px_node_html#a214deb1c971a5879657c8b1de4156422
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=GUID-3723226B-8A46-41A4-9FB4-AF5B55DF72A2
https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=GUID-3423BE20-0F03-422D-A05A-A1757C7B0A70

Using Parallel Maya Profiling Your Scene

Once the Profiler window is visible:

1. Load your scene and start playback
2. Click Start in the Profiler to record information in the pre‐allocated record buffer.
3. Wait until the record buffer becomes full or click Stop in the Profiler to stop recording. The Profiler

shows a graph demonstrating the processing time for your animation.
4. Try recording the scene in DG, Serial, Parallel, and GPU Overridemodes.

Tip. By default, the Profiler allocates a 20MB buffer to store results. The record buffer can be
expanded in the UI or by using the profiler ‐b value; command, where value is the desired
size in MB. You may need this for more complex scenes.

The Profiler includes information for all instrumented code, including playback, manipulation, authoring
tasks, and UI/Qt events. When profiling your scene, make sure to capture several frames of data to ensure
gathered results are representative of scene bottlenecks.

The Profiler supports several views depending on the task youwish to perform. The default CategoryView,
shown below, classifies events by type (e.g., dirty, VP1, VP2, Evaluation, etc). The Thread and CPU views
show how function chains are subdivided amongst available compute resources. Currently the Profiler
does not support visualization of GPU‐based activity.

Understanding Your Profile

Now that you have a general sense of what the Profiler tool does, let’s discuss key phases involved in
computing results for your scene and how these are displayed. By understanding why scenes are slow,
you can target scene optimizations.

2026 52

Using Parallel Maya Profiling Your Scene

Every timeMaya updates a frame, it must compute and draw the elements in your scene. Hence, compu‐
tation can be split into one of two main categories:

1) Evaluation (i.e., doing the math that determines the most up‐to‐date values for scene elements)
2) Rendering (i.e., doing the work that draws your scene in the viewport).

When the main bottleneck in your scene is evaluation, we say the scene is evaluation‐bound. When the
main bottleneck in your scene is rendering, we say the scene is render‐bound.

Profiler Colors

Each event recorded by the profiler has an associated color. Each color represents a different type of
event. By understanding event colors you can quickly interpret profiler results. Some colors are re‐used
and so have different meanings in different categories.

• Dirty Propagation (Pink and Purple)
• Pull Evaluation (Dark Green)
• Forward or Evaluation Manager Evaluation (Peach, Tan and Brown)
• Set Time (Light Green)
• Qt Events (Light Blue)
• VP2 Rendering (Light Blue)
• VP2 Pull Updates (Light and Dark Yellow and Blue)
• VP2 Push or Direct Updates (Light and Dark Blue)
• GPU Override CPU usage (Light and Dark Yellow)
• Cache Restore (Yellow)
• Cache Skipped (Gray)

We can’t see every different type of event in a single profile, because some events like Dirty Propagation
only occur with Evaluation Manager off, and other events like GPU Override CPU usage only occur with
EvaluationManager on. In the following example profileswewill showDGEvaluation, EvaluationManager
Parallel Evaluation, GPU Override Evaluation, Evaluation Cached Evaluation and VP2 Cached Evaluation.
Through these examples we’ll see how to interpret a profile based on graph colors and categories, and
we’ll learn how each performance optimization in Maya can impact a scene’s performance. The following
example profiles are all generated from the same simple FK character playing back.

2026 53

Using Parallel Maya Profiling Your Scene

DG Evaluation

In this profile of DG Evaluation we can see several types of event.

1. Pink and purple Dirty Propagation events in the Dirty Propagation category.
2. Dark green Pull Evaluation events in the Evaluation category.
3. Blue VP2 Pull Translation and light blue VP2 Rendering in the VP2 Evaluation category.
4. Yellow events in the VP2 Evaluation category show time VP2 spent waiting for data from Depen‐

dency Graph nodes.

A significant fraction of each frame is spent on Dirty Propagation, a problem which is alleviated by Evalu‐
ation Manager.

2026 54

Using Parallel Maya Profiling Your Scene

EM Parallel Evaluation

In this profile of EM Parallel Evaluation we can see all the purple and pink dirty propagation is gone.

1. Peach, tan and brown EM Parallel Evaluation events of the FK rig colored. The high stack of events
represents some evaluation occurring in parallel (use thread view to better understand parallelism).

2. Tan and brown EM Parallel Evaluation events while Maya evaluates the skin cluster to compute the
deformed mesh. These events occur serially because the Dependency Graph has no parallelism.

3. Dark blue and blue VP2 Direct Update events translate data into a VP2 render‐able format.
4. Yellow in theMain category and light blue in the VP2 Evaluation category are VP2 Rendering events.

In this profilewe seemuch less time spent onVp2SceneRender (4). This occurs becausetime spent reading
data from dependency nodes has been moved from rendering to EM Parallel Evaluation (1). DG evalua‐
tion uses a data pull model, while EM Evaluation uses a data push model. Additionally, some geometry
translation (2), is also moved from rendering to evaluation. We call geometry translation during evalu‐
ation “VP2 Direct Update”. A significant portion of each frame is spent deforming and translating the
geometry data, a problem which is alleviated by GPU Override.

2026 55

Using Parallel Maya Profiling Your Scene

EM Parallel Evaluation with GPU Override

In this profile of EM Parallel Evaluation we can see one major new difference from the previous profile of
EM Parallel Evaluation.

1. Light and dark yellow GPU Override events have replaced the long serial central part of the EM
Parallel Evaluation profile (2 & 3 from EM Parallel Evaluation). The GPU Override events represent
the time taken on the CPU to marshal data and launch the GPU computation.

2. Peach, tan and brown EM Parallel Evaluation events here have roughly the same duration as EM
Parallel Evaluation even though the relative size of the rig evaluation events with GPU Override is
larger. This is because the scale of this profile is different from the scale of the previous profile. In
the profile of EM Parallel Evaluation with GPU Override the total time displayed is about 5ms. In
the previous profile of EM Parallel Evaluation the total time displayed is about 12ms.

3. Light blue VP2 Render events have experienced a similar relative stretching (2).

2026 56

Using Parallel Maya Profiling Your Scene

EM Evaluation Cached Playback

In this profile of EM Evaluation Cached Playback we can see several new types of event.

1. Yellow Restore Cache events recording the time taken to update each FK rig node which has cached
data. There are also brown VP2 Direct Update events used to track update of the VP2 representa‐
tion of the data.

2. Yellow Restore Cache event for the deformed mesh. This represents the time taken to restore the
data into the Maya node, and to translate the data into VP2 for drawing using VP2 Direct Update.

2026 57

Using Parallel Maya Profiling Your Scene

EM VP2 Hardware Cached Playback

1. Dark blue VP2 Hardware Cache Restore events have replaced the long serial Cache Restore event (2
from EM Evaluation Cached Playback). Restoring the VP2 Hardware Cache is much faster because
the data is already in in the render‐able format and stored on the GPU.

2. Gray Cache Skipped event signaling data in the dependency node is not updated.

Evaluation‐Bound Performance

When the main bottleneck in your scene is evaluation, we say the scene is evaluation‐bound. There are
several different problems that may lead to evaluation‐bound performance.

Lock Contention. When many threads try to access a shared resource you may experience Lock Con‐
tention, due to lock management overhead. One clue that this may be happening is that evaluation takes
roughly the same duration regardless of which evaluationmode you use. This occurs since threads cannot
proceed until other threads are finished using the shared resource.

2026 58

Using Parallel Maya Profiling Your Scene

Here the Profiler shows many separate identical tasks that start at nearly the same time on different
threads, each finishing at different times. This type of profile offers a clue that there might be some
shared resource that many threads need to access simultaneously.

Below is another image showing a similar problem.

In this case, since several threads were executing Python code, they all had to wait for the Global Inter‐
preter Lock (GIL) to become available. Bottlenecks and performance loses caused by contention issues
may be more noticeable when there is a high concurrency level, such as when your computer has many
cores.

2026 59

Using Parallel Maya Profiling Your Scene

If you encounter contention issues, try to fix the code in question. For the above example, changing node
scheduling converted the above profile to the following one, providing a nice performance gain. For this
reason, Python plug‐ins are scheduled as Globally Serial by default. As a result, they will be scheduled
one after the other and will not block multiple threads waiting for the GIL to become available.

Clusters. As mentioned earlier, if the EG contains node‐level circular dependencies, those nodes will be
grouped into a cluster which represents a single unit of work to be scheduled serially. Although multiple
clustersmay be evaluated at the same time, large clusters limit the amount of work that can be performed
simultaneously. Clusters can be identified in the Profiler as bars with the opaqueTaskEvaluation label,
shown below.

2026 60

Using Parallel Maya Profiling Your Scene

If your scene contains clusters, analyze your rig’s structure to understand why circularities exist. Ideally,
you should strive to remove coupling between parts of your rig, so rig sections (e.g., head, body, etc.) can
be evaluated independently.

Tip. When troubleshooting scene performance issues, you can temporarily disable costly nodes
using the per‐node frozen attribute. This removes specific nodes from the EG. Although the result
you see will change, it is a simple way to check that you have found the bottleneck for your scene.

Render‐Bound Performance

When the main bottleneck in your scene is rendering, we say the scene is render‐bound. The following
is an illustration of a sample result from the Maya Profiler, zoomed to a single frame measured from a
large scene with many animated meshes. Because of the number of objects, different materials, and the
amount of geometry, this scene is very costly to render.

2026 61

Using Parallel Maya Profiling Your Scene

The attached profile has four main areas:

• Evaluation (A)
• GPUOverridePostEval (B)
• Vp2BuildRenderLists (C)
• Vp2Draw3dBeautyPass (D)

In this scene, a substantial number of meshes are being evaluated with GPU Override and some profiler
blocks appear differently from what they would otherwise.

Evaluation. Area A depicts the time spent computing the state of the Maya scene. In this case, the
scene is moderately well‐parallelized. The blocks in shades of orange and green represent the software
evaluation of DG nodes. The blocks in yellow are the tasks that initiate mesh evaluation via GPU Override.
Mesh evaluation on the GPU starts with these yellow blocks and continues concurrently with the other
work on the CPU.

An example of a parallel bottleneck in the scene evaluation appears in the gap in the center of the evalua‐
tion section. The large group of GPU Override blocks on the right depend on a single portion of the scene
and must wait until that is complete.

2026 62

Using Parallel Maya Profiling Your Scene

Area A2 (above area A), depicts blue task blocks that show the work that VP2 does in parallel to the scene
evaluation. In this scene, most of the mesh work is handled by GPU Override so it is mostly empty. When
evaluating software meshes, this section shows the preparation of geometry buffers for rendering.

GPUOverridePostEval. Area B is where GPU Override finalizes some of its work. The amount of time
spent in this block varies with different GPU and driver combinations. At some point there will be a wait
for the GPU to complete its evaluation if it is heavily loaded. This time may appear here or it may show
as additional time spent in the Vp2BuildRenderLists section.

Vp2BuildRenderLists. Area C. Once the scene has been evaluated, VP2 builds the list of objects to render.
Time in this section is typically proportional to the number of objects in the scene.

Vp2PrepareToUpdate. Area C2, very small in this profile. VP2 maintains an internal copy of the world
and uses it to determine what to draw in the viewport. When it is time to render the scene, we must
ensure that the objects in the VP2 database have beenmodified to reflect changes in theMaya scene. For
example, objects may have become visible or hidden, their position or their topology may have changed,
and so on. This is done by VP2 Vp2PrepareToUpdate.

Vp2PrepareToUpdate is slow when there are shape topology, material, or object visibility changes. In this
example, Vp2PrepareToUpdate is almost invisible since the scene objects require little extra processing.

Vp2ParallelEvaluationTask is another profiler block that can appear in this area. If time is spent here, then
some object evaluation has been deferred from the main evaluation section of the Evaluation Manager
(area A) to be evaluated later. Evaluation in this section uses traditional DG evaluation.

Common cases for which Vp2BuildRenderLists or Vp2PrepareToUpdate can be slow during Parallel Evalu‐
ation are:

• Large numbers of rendered objects (as in this example)
• Mesh topology changes
• Object types, such as image planes, requiring legacy evaluation before rendering
• 3rd party plug‐ins that trigger API callbacks

Vp2Draw3dBeautyPass. Area D. Once all data has been prepared, it is time to render the scene. This is
where the actual OpenGL or DirectX rendering occurs. This area is broken into subsections depending on
viewport effects such as depth peeling, transparency mode, and screen space anti‐aliasing.

Vp2Draw3dBeautyPass can be slow if your scene:

• Has Many Objects to Render (as in this example).
• Uses Transparency. Large numbers of transparent objects can be costly since the default trans‐

parency algorithmmakes scene consolidation less effective. For very large numbers of transparent
objects, setting Transparency Algorithm (in the vp2 settings) to Depth Peeling instead of Object
Sorting may be faster. Switching to untextured mode can also bypass this cost

• Uses Many Materials. In VP2, objects are sorted by material prior to rendering, so having many
distinct materials makes this time‐consuming.

2026 63

Using Parallel Maya Troubleshooting Your Scene

• Uses Viewport Effects. Many effects such as SSAO (Screen Space Ambient Occlusion), Depth of
Field, Motion Blur, Shadow Maps, or Depth Peeling require additional processing.

Other Considerations. Although the key phases described above apply to all scenes, your scenemay have
different performance characteristics.

For static scenes with limited animation, or for non‐deforming animated objects, consolidation is used
to improve performance. Consolidation groups objects that share the same material. This reduces time
spent in both Vp2BuildRenderLists and Vp2Draw3dBeatyPass, since there are fewer objects to render.

Saving and Restoring Profiles

Profile data can be saved at any time for later analysis using the Edit ‐> Save Recording... or
Edit ‐> Save Recording of Selected Events... menu items in the Profiler window. Everything
is saved as plain string data (see the appendix describing the profiler file format for a description of how
it is stored) so that you can load profile data from any scene using the Edit ‐> Load Recording...
menu item without loading the scene that was profiled.

Troubleshooting Your Scene

Analysis Mode

The purpose of Analysis Mode is to perform more rigorous inspection of your scene to catch evaluation
errors. Since Analysis Mode introduces overhead to your scene, only use this during debugging activities;
animators should not enable Analysis Mode during their day‐to‐day work. Note that Analysis Mode is not
thread‐safe, so it is limited to Serial; you cannot use analysis mode while in Parallel evaluation.

The key function of Analysis Mode is to:

• Search for errors at each playback frame. This is different than Safe Mode, which only tries to
identify problems at the start of parallel execution.

• Monitor read‐access to node attributes. This ensures that nodes have a correct dependency struc‐
ture in the EG.

• Returndiagnostics to better understandwhichnodes influence evaluation. This is currently limited
to reporting one destination node at a time.

2026 64

Using Parallel Maya Troubleshooting Your Scene

Tip. To activate Analysis Mode, use the dbtrace ‐k evalMgrGraphValid;MEL command.

Once active, error detection occurs after each evaluation. Missing dependencies are saved to a file
in your machine’s temporary folder (e.g., %TEMP%_MayaEvaluationGraphValidation.txt on
Windows). The temporary directory on your platform can be determined using the internalVar
‐utd;MEL command.

To disable Analysis Mode, type: dbtrace ‐k evalMgrGraphValid ‐off;

Let’s assume that your scene contains the following three nodes. Because of the dependencies, the eval‐
uation manager must compute the state of nodes B and C prior to calculating the state of A.

Now let’s assume Analysis Mode returns the following report:

Detected missing dependencies on frame 56
{

A.output <‐x‐ B
A.output <‐x‐ C [cluster]

}
Detected missing dependencies on frame 57
{

A.output <‐x‐ B
A.output <‐x‐ C [cluster]

}

The <‐x‐ symbol indicates the direction of the missing dependency. The [cluster] term indicates that
the node is inside of a cycle cluster, which means that any nodes from the cycles could be responsible for
attribute access outside of evaluation order

2026 65

Using Parallel Maya Known Limitations

In the above example, B accesses the output attribute of A,which is incorrect. These types of dependency
do not appear in the Evaluation Graph and could cause a crash when running an evaluation in Parallel
mode.

There are multiple reasons that missing dependencies occur, and how you handle them depends on the
cause of the problem. If Analysis Mode discovers errors in your scene from bad dependencies due to:

• A user plug‐in. Revisit your strategy for managing dirty propagation in your node. Make sure that
any attempts to use “clever” dirty propagation dirty the same attributes every time. Avoid using
different notification messages to trigger pulling on attributes for computation.

• A built‐in node. You should communicate this information to us. This may highlight an error that
we are unaware of. To help us best diagnose the causes of this bug, we would appreciate if you can
provide us with the scene that caused the problem.

Graph Execution Order

There are two primary methods of displaying the graph execution order.

The simplest is to use the ‘compute’ trace object to acquire a recording of the computation order. This
can only be used in Serial mode, as explained earlier. The goal of compute trace is to compare DG and
EM evaluation results and discover any evaluation differences related to a different ordering or missing
execution between these two modes.

Keep in mind that there will be many differences between runs since the EM executes the graph from
the roots forward, whereas the DG uses values from the leaves. For example in the simple graph shown
earlier, the EM guarantees that B and C will be evaluated before A, but provides no information about
the relative ordering of B and C. However in the DG, A pulls on the inputs from B and C in a consistent
order dictated by the implementation of node A. The EM could show either ”B, C, A” or ”C, B, A” as their
evaluation order and although both might be valid, the user must decide if they are equivalent or not.
This ordering of information can be even more useful when debugging issues in cycle computation since
in both modes a pull evaluation occurs, which will make the ordering more consistent.

The Evaluation Toolkit

A set of debugging tools used to be shipped as a special shelf in Maya Bonus Tools, but they are now built‐
in within Maya. The Evaluation Toolkit provides features to query and analyze your scene and to activate
/ deactivate various modes. See the accompanying Evaluation Toolkit documentation for a complete list
of all helper features.

Known Limitations

This section lists known limitations for the new evaluation system.

2026 66

https://help.autodesk.com/view/MAYADEV/2026/ENU/?guid=GUID-E22B253D-914B-4056-93F5-755702A6C998

Using Parallel Maya Appendices

• VP2 Motion Blur will disable Parallel evaluation. For Motion Blur to work, the scene must be
evaluated at different points in time. Currently the EM does not support this.

• Scenes using FBIK will revert to Serial. For several years now, Autodesk has been deprecating FBIK.
We recommend using HIK for full‐body retargeting/solving.

• dbtrace will not work in Parallel mode. As stated in the Analysis Mode section, the dbtrace com‐
mand only works in Serial evaluation. Having traces enabled in Parallel mode will likely causeMaya
to crash.

• The DG Profiler crashes in ParallelMode. Unless you are in DG evaluationmode, youwill be unable
to use the legacy DG profiler. Time permitting, we expect to move features of the DG profiler into
the new thread‐safe integrated profiler.

• Batch rendering scenes with XGen may produce incorrect results.
• Evaluation manager in both Serial and Parallel mode changes the way attributes are cached. This

is done to allow safe parallel evaluation and prevent re‐computation of the same data by multiple
threads. This means that some scenes may evaluate differently if multiple computations of the
same attribute occur in one evaluation cycle. With the Evaluation Manager, the first value will be
cached.

• VP2 Direct update does not work with polySoftEdge nodes.

Appendices

Profiler File Format

The profiler stores its recording data in human‐readable strings. The format is versioned so that older
format files can still be read into newer versions of Maya (though not necessarily vice‐versa).

This is a description of the version 1 format.

First, a content example:

1 #File Version, # of events, # of CPUs
2 2\t12345\t8
3 Main\tDirty
4 #Comment mapping‐‐‐‐‐‐‐‐‐
5* @27 = MainMayaEvaluation
6 #End comment mapping‐‐‐‐‐‐‐‐‐
7 #Event time, Comment, Extra comment, Category id, Duration, \

Thread Duration, Thread id, Cpu id, Color id
8* 1234567\t@12\t@0\t2\t12345\t11123\t36\t1\t14
9 #Begin Event Tag Mapping‐‐‐‐‐‐‐‐‐
10 #Event ID, Event Tag
11* 123\tTaggy McTagface
12 #End Event Tag Mapping‐‐‐‐‐‐‐‐‐

2026 67

Using Parallel Maya Appendices

13 #Begin Event Tag Color Mapping‐‐‐‐‐‐‐‐‐
14 #Tag Label, Tag Color
15* Taggy\tMcTagface\t200\t200\t13
16 #End Event Tag Color Mapping‐‐‐‐‐‐‐‐‐
EOF

The following table describes the file format structure by referring to the previous content:

Line(s) Description

1 A header line with general file information names
2 A tab‐separated line containing the header information
3 A tab‐separated line containing the list of categories used by the events (category ID is

the index of the category in the list)
4 A header indicating the start of comment mapping (a mapping from an ID to the string it

represents)
5* Zero or more lines lines mapping a number onto a string in the form @LINE = STRING.

The IDs do not correspond to anything outside of the file.
6 A footer indicating the end of comment mapping
7 A header indicating the start of event information.

The names are the titles of the event columns.

• Event time is the absolute time, in ticks,
the event started

• Duration is the total amount of time, in
ticks, for the entire event

• Thread duration is the total amount of time,
in ticks, the event took inside the thread

• Comment and Extra comment use an ID
from the comment mapping above

• Category id is the index of the event’s
category from the list at line 3

• Cpu id and Thread id are the ones in which
the event took place. Actual values are
arbitrary; only meant to distinguish unique
CPUs and Threads

• Color id is an index into the color mapping
internal to the app (colors at the time of
creation are not stored in the file).

8* Zero or more tab‐separated lines mapping to all of the events that were stored in the file
9 A header indicating the start of the event tag maps

2026 68

Using Parallel Maya Appendices

Line(s) Description

10 A title line showing what values are in the event tag map columns
11* Zero or more tab‐separated lines attaching an event tag, defined through the profiler tool,

to a specific event ID. The event ID will correspond to the ID given to it in the comment
mapping section.

12 A footer indicating the end of the event tag maps
13 A header indicating the start of the event tag color maps
14 A title line showing what values are in the event tag color map columns
15* Zero or more tab‐separated lines mapping a tag label defined above to an R,G,B color
16 A header indicating the end of the event tag color maps
EOF

Sample version 2 file on 4 CPUs containing a single event of type “ETName”, description “ETDescription”,
in category “ETCategory” with description “Category description”, using color 7, of duration 100 ticks,
starting at tick 999, on a single thread with ID 22, tagged with “TagMe” which has color red (255 0 0)

#File Version, # of events, # of CPUs
2 1 4
ETCategory
Category description
#Comment mapping‐‐‐‐‐‐‐‐‐
@0 = ETName
#End comment mapping‐‐‐‐‐‐‐‐‐
999 @0 @0 1 100 100 22 1 7
#Begin comment description mapping‐‐‐‐‐‐‐‐‐
@1 = ETDescription
#End comment description mapping‐‐‐‐‐‐‐‐‐
#Begin Event Tag Mapping‐‐‐‐‐‐‐‐‐
#Event ID, Event Tag
1 TagMe
#End Event Tag Mapping‐‐‐‐‐‐‐‐‐
#Begin Event Tag Color Mapping‐‐‐‐‐‐‐‐‐
#Tag Label, Tag Color
TagMe 255 0 0
#End Event Tag Color Mapping‐‐‐‐‐‐‐‐‐

Debugging Commands

Several commands can be used to help display information about your scene to help in debugging or
optimizations. This is a summary of some of the more common ones, and represents only the available

2026 69

Using Parallel Maya Appendices

runtime information. Consult the command documentation inMaya’s online technical documentation for
more information about each command.

dbcount

Maintains embedded code location counters for higher‐level debugging of scene operation. Generally,
this uses specialized code that is only available in custom builds.

Synopsis: dbcount [flags]
Flags:

‐e ‐enabled on|off
‐f ‐file String
‐k ‐keyword String
‐l ‐list
‐md ‐maxdepth UnsignedInt
‐q ‐quick
‐r ‐reset
‐s ‐spreadsheet

Command Type: Command

dbmessage

Monitors messaging that adds and removes DAG and DG nodes.

Synopsis: dbmessage [flags]
Flags:

‐f ‐file String
‐l ‐list
‐m ‐monitor on|off
‐t ‐type String

Command Type: Command

dbtrace

Turns on conditional code, typically to print out status information or to take different code paths when
enabled.

To find available trace objects use dbtrace –q to list currently‐enabled traces, and dbtrace –q –off to list
currently‐disabled traces.

2026 70

https://help.autodesk.com/cloudhelp/2026/ENU/Maya-Tech-Docs/CommandsPython/index.html

Using Parallel Maya Appendices

To find the current trace output target, use dbtrace ‐q ‐k keyword ‐o.

See below for information on specific keywords.

Note: Work is currently in progress to make these trace objects more flexible. It is a current design con‐
straint that sometimes they are visible in a release, even though they only function internally, and some
cannot be used when using Parallel evaluation.

Synopsis: dbtrace [flags]
Flags:

‐q ‐query
‐f ‐filter String
‐i –info
‐k ‐keyword String (multi‐use)

(Query Arg Optional)
‐m ‐mark
‐o ‐output String

‐off ‐
‐t ‐title String
‐tm ‐timed on|off
‐v ‐verbose

Command Type: Command

Keyword Description Contents (Default Output File)

OGSPolyGhosts Shows progress of data
extraction from the
evaluation of poly ghosts
through OGS

(stdout)

cacheConfig Shows cache configuration
rules evaluation

Result of cache configuration rules for each
evaluation node (_Trace_CacheConfig.txt)

cipEM Shows what Customer
Improvement Program
data is being collected.

Generic usage information. No longer being
used (stdout)

cmdTracking Enables the tracking of
counts of commands. Use
the dbpeek ‘cmdTracking’
operation to view the
results.

No output, but enables tracking of the counts
for all commands being executed. (For
example, you can turn it on during file load to
get a count of the number of createNode
calls, including those in referenced files, a
task that is difficult to do manually) (stdout)

2026 71

Using Parallel Maya Appendices

Keyword Description Contents (Default Output File)

compute High level trace of the
compute path

Nested output showing compute methods
being called. Typically in EMmode you should
see nesting only in cycles. DG mode will show
the full set of nodes triggered by a single
evaluation request (_Trace_Compute.txt)

dbCache Data block manipulation Details of the creation and manipulation of
datablock information
(_Trace_DataBlockCache.txt)

deformerEvaluator Statistics for the deformer
evaluator setup

Shows statistics on what the deformer
evaluator was able to ingest, once enabled
(stderr)

evalMgr Evaluation manager
interactions

(_Trace_EvalManager.txt)

evalMgrGraphInvalid Evaluation manager graph
invalidation

(stdout)

evalMgrGraphValid Evaluation manager
execution graph validation
errors and warnings

Nodes that were evaluated while in EMS
mode using the pull (DG) model. This
indicates missing dependencies in the
evaluation graph, possibly caused by custom
dirty propagation
(_MayaEvaluationGraphValidation.txt)

evalMgrSched Internal use only (_MayaScheduling.txt)
idleBuild Operation of the idle build

mechanism for the
evaluation graph

When the idle build is active, this appears
when the idle build is triggered and executed
(_Trace_EGBuild.txt)

nodeTracking Enables tracking of counts
of created nodes. Use the
dbpeek ‘nodeTracking’
operation to view results.

(stdout)

peekCache Shows progress of the
dbpeek ‐op cache
operation

Dumps data collected by the dbpeek
operation, and how
(_Trace_DbPeekCache.txt)

peekContext Shows progress of the
dbpeek ‐op context
operation

Dumps data collected by the dbpeek
operation, and how (stdout)

peekData Shows progress of the
dbpeek ‐op data operation

Dumps data collected by the dbpeek
operation, and how (_Trace_DbPeekData.txt)

peekMesh Shows progress of the
dbpeek ‐op mesh
operation

Dumps data collected by the dbpeek
operation, and with what flags
(_Trace_DbPeekMesh.txt)

2026 72

Using Parallel Maya Appendices

dgdebug

Historical debugging command; not robust or documented. Deprecated: Use the newer dbpeek com‐
mand.

No help is provided for this command.

dgdirty

Forces dirty/clean states onto specified plugs and everything downstream from them. Meant to be a
safety net for restoring proper states to your scene when something has gone wrong.

You should not need to use this command, but it will continue to exist as a “reset button”, just in case.

Synopsis: dgdirty [flags] [String...]
Flags:

‐q ‐query
‐a ‐allPlugs
‐c ‐clean
‐i ‐implicit
‐l ‐list String
‐p ‐propagation
‐st ‐showTiming
‐v ‐verbose

Command Type: Command

dgeval

Forces the node to compute certain plugs. Like dgdirty, this command is meant to be a safety net if
computation has not occurred in the proper order. Similar in function to the getAttr command, but since
it returns no results, it can handle all attribute types, not only those supported by getAttr.

Synopsis: dgeval [flags] String...
Flags:
‐src ‐
‐v ‐verbose

Command Type: Command

2026 73

Using Parallel Maya Appendices

dgInfo

Dumps information about the current state of the graph. Be aware that when plug dirty states are re‐
ported, they represent the connection associated with the plug. In fan‐out or in‐out connections there
will be more than one dirty state associated with the connection attached to the plug. This means it is
legal to see A‐>B as dirty but B‐>A as clean if A has multiple connections. Being Deprecated: Use the
newer dbpeek command.

Synopsis: dgInfo [flags] [String...]
Flags:
‐all ‐allNodes
‐c ‐connections
‐d ‐dirty on|off
‐n ‐nodes
‐nd ‐nonDeletable
‐nt ‐type String
‐of ‐outputFile String
‐p ‐propagation on|off
‐s ‐short

‐sub ‐subgraph
‐sz ‐size

Command Type: Command

dgmodified

Checks on the reason a file requests saving when no changes have been made.

Synopsis: dgmodified

No Flags.

dbpeek

This command is called out intentionally, as it combines multiple operations into a single command by
use of various operations.

It runs one of several operations that provide a view into the data internals in the scene. This is the most
useful and flexible of the debugging commands, and new variations of it are often being introduced. Use
dbpeek ‐q ‐op to show a list of currently available operations and dbpeek ‐op X ‐q to show detailed help
for operation X.

2026 74

Using Parallel Maya Appendices

See below for information on specific keywords.

Note: The syntax of the argument flag allows for both keyword argument=’key’ and keyword/value argu‐
ment=’key=value’ forms.

Synopsis: dbpeek [flags] [String...]
Flags:

‐q ‐query
‐a ‐argument String (multi‐use) (Query Arg Mandatory)

‐all ‐allObjects
‐c ‐count UnsignedInt
‐eg ‐evaluationGraph
‐of ‐outputFile String
‐op ‐operation String (Query Arg Optional)

Command Type: Command

dbpeek ‐op attributes

Analyzes node or node‐type attributes and dumps information about them based on what the selected
operation type.

Various arguments to the operation change the content of the output. The essence remains the same;
the attributes belong to the node or node type.

Argument Meaning

detail Adds all internal details from attributes being dumped, otherwise dumps only the
names and structure. The details are output as object members of the attribute,
including the children.

nodeType Dumps all attributes belonging to the selected node(s) types. If nothing is
selected, it dumps the attributes for all available node types. This includes all node
types up the hierarchy to the base node class.

noDynamic Skips dynamic attributes in all output.
noExtension Skips extension attributes in all output.
noStatic Skips static attributes in all output.
onlyPlugins Restricts any output to nodes and node types that originate from a plug‐in.
type=affects Dumps attribute structure and affects relationships in the graphical .dot format.
type=detail Dumps attribute information in .json format. This is the default if no type is

specified.
type=validate Validates flags and structure for consistency and validity.

If no nodes are selected, then this command prints the list of all attributes on all nodes. For example, if
you had a node type called reversePoint with a vector input and a vector output.

2026 75

Using Parallel Maya Appendices

type=detail would output this JSON data:

{
"nodes" :
{

"reversePoint" :
{
"staticAttributes" : [
{ "pointInput" : [

"pointInputX",
"pointInputY",
"pointInputZ",

]
},
{ "pointOutput" :
[
"pointOutputX",
"pointOutputY",
"pointOutputZ",

]
}

],
"extensionAttributes" : []

}
}

}

type=affects would output this DOT data:

digraph G
{

compound=true;
subgraph cluster_NODENAME
{

label="Node NODENAME, Type NODETYPE";
color=".7 .0 .0";
ia [label="ia/inputAttribute",style="rounded",shape=ellipse];
oa [label="oa/outputAttribute",style="rounded",shape=rectangle];
ia ‐> oa;

}
}

2026 76

Using Parallel Maya Appendices

and type=validate would output this JSON validation summary:

{
"Attribute Validation" :
{
"NODENAME" :
{

"staticAttributes" :
[
{
"Both input and output attributes in compound" :
[
{ "root" : "rootAttribute",
"inputs" : ["inputChild"],
"outputs" : ["outputChild"],

}
]

}
]

}
}

}

dbpeek ‐op cache

This operation is explained in detail in the Debugging section of theMaya Cached Playback whitepaper.

dbpeek ‐op cmdTracking

By default, when no detail argument is present it shows a list of all commands run since the last reset as
well as a count of how many of each type were executed.

Outputs in command/count pair form, one per line, with a tab character separating them.

Argument Meaning

reset Set all of the command tracking statistics to zero

dbpeek ‐op connections

By default, when no type argument is present, shows a list of all connections in the DG.

2026 77

https://damassets.autodesk.net/content/dam/autodesk/www/html/maya-cached-playback/2026/MayaCachedPlaybackWhitePaper.html#debugging

Using Parallel Maya Appendices

Argument Meaning

summary Reduces the output to show only the connection counts on the nodes. It separates
by single and multi but no further information is added. Useful for getting basic
usage information.

verbose Shows extra information about every connection, including dirty/propagation
states, plug ownership, and type connectivity of the connection. Connections can
be single or multi, and be connected either to each other or to plugs.

dbpeek ‐op data

Dumps the current contents of a node’s plug data in a standard format. By default the output is in CSV
format consisting of 5 columns: NODE PLUG DATA_TYPE CLEAN_STATE DATA_AS_TEXT

Example for a simple integer attribute with a dirty value of 5: MyNode MyPlug Int32 0 5

Argument Meaning

eval Evaluates plugs first to guarantee that they are clean. Note: Some plugs are always
dirty so there may still be plugs that show a dirty value.

full Includes plugs with default values in the output.
json Uses JSON format for the output. The general form is { "NODE" : { "PLUG" : {

"TYPE", "CLEAN", "VALUE" } } }. For example, a simple numeric attribute
with a dirty value of 5 { "MyNode" : { "MyPlug", "0", "5" } }

matrix Includes all plugs with a “matrix” data type in the output. This does not include
generic data that may have a matrix value at runtime, only attributes that are
exclusively matrix types.

number Includes all plugs with any numerical data type in the output. This does not include
any generic data that may have numerical value at runtime, only attributes that are
exclusively numeric types. It includes all types of numeric values, including linear,
angular, time, and unitless values.

state Includes the current dirty state of the data in the output.
time=TIME Rather than evaluating at the normal context, evaluates at a context using the given

time. This is somewhat equivalent to getAttr ‐t TIME.
vector Includes all plugs with a “vector” data type in the output. Does not include generic

data that may have a vector value at runtime, only attributes that are exclusively
double[3] types.

dbpeek ‐op context

Analyzes context evaluation to detect various errors violating the design.

2026 78

Using Parallel Maya Appendices

Argument Meaning

isolationType=animatedAttributes Filters errors, reporting only those involving animated
attributes

isolationType=animatedNodes Filters errors, reporting only those involving animated
nodes

isolationType=staticAndAnimated Reports all errors
test=isolation During evaluation, detects when evaluation context is

violated causing data to be read or written into a state
that belongs to some other evaluation context

test=correctness Evaluates the scene in the background, comparing
evaluation data stored for background and main context;
compares traversing evaluation graph visiting nodes only
if all upstream nodes generate equivalent data in both the
background and the main context

time=TIME Takes a string value indicating the frame time at which
evaluation should be performed.

verbose Adds extra information to output report. Each test will
have its own verbose data. Isolation: Adds callstack
information to the report for each detected error.
Correctness: Adds attributes which compare failed to
compare (due to missing logic)

Sample output for isolation tests:

{
"context isolation": {

"frame": 5.0,
"type": "animatedNodes",
"verbose": true,
"errors": [

{
"node": "ikHandle1",
"type": "ikHandle",
"attribute": "ikFkManipulation",
"call stack": [

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
},
{

2026 79

Using Parallel Maya Appendices

"node": "shape",
"type": "mesh",
"attribute": "displaySmoothMesh",
"call stack": [

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
}

],
"time out": true

}
}

Sample output for correctness tests:

{
"context correctness": {

"frame": 14.0,
"verbose": true,
"errors": [

{
"node": "IKSpineCurveShape",
"type": "nurbsCurve",
"attributes": [

"worldSpace"
]

}
],
"failed to compare": [

"input",
"clusterXforms",
"clusterTransforms",
"target",
"mySpecialAttribute"

],
"time out": true

}
}

2026 80

Using Parallel Maya Appendices

dbpeek ‐op edits

Shows a list of all nodes for which tracking is currently enabled. The “track” flag is mandatory.

Argument Meaning

track Shows a list of all nodes for which tracking is currently enabled.

dbpeek ‐op evalMgr

Outputs the current state of all of the custom evaluators used by the Evaluation Manager.

Argument Meaning

custom Outputs the custom evaluators registered with the evaluation manager.
global Adds output that is independent of scene contents, for example, node types

enabled for the custom evaluators.
local Adds output that is specific to the scene contents, for example, nodes supported by

a custom evaluator.

dbpeek ‐op graph

Gets a list of nodes or connections from either the dependency graph or the underlying evaluation graph.

Argument Meaning

connections Dumps the list of all connections in the chosen graph. The sorting order is
alphabetical by destination plug name.

dot Dumps the graph information in .dot format for parsing and display by an
external application such as graphViz.

evaluationGraph Gets the structure information from the evaluation graph, otherwise uses the
raw dependency graph. The dbpeek command flag “evaluationGraph” does the
same thing.

graph Dumps the graph state and contents, not including what is dumped by any of
the other flags.

nodes Dumps the list of all nodes in the chosen type of graph, in alphabetical order by
full node name.

plugs For the evaluation graph option, dumps the list of all plugs in its dirty plug list
in the evaluation nodes. For the DG option, dumps the list of plugs currently in
the plug trees.

2026 81

Using Parallel Maya Appendices

Argument Meaning

scheduling Dumps the scheduling type used for all nodes in the type of graph in the form
NODE = SCHEDULING_TYPE. If a node type is specified, the default scheduling
type for nodes of that specific node type is returned in the same format.

verbose When dumping the scheduling graph in .dot format, adds all of the names of
the nodes to the clusters. Otherwise, it is only a count of nodes in each cluster

dbpeek ‐op mesh

Dumps the current contents of themesh to a standard format. There are two types of formatting and two
levels of detail to present.

Argument Meaning

eval Evaluates mesh plugs first to guarantee they are clean. Otherwise the values
currently present in the mesh shape are used as‐is.

json Dumps data in JSON format instead of CSV.
verbose Puts full values for all of the data in the output. Otherwise, only a number count of

each type is returned. See the flag descriptions for more information on which data
can be requested and what is returned for each type.

vertex Includes vertex position or vertex count in the output. The short return is a count
of vertices in the mesh. The verbose values are a list of vertex number and the
{X,Y,Z} positions of the vertex, with W factored in, if appropriate.

For the default level of detail, the default CSV format output will look like this:

NODE_NAME,DATA_TYPE,DATA_COUNT

For example, a cube containing 32 vertices would have these lines:

Node,DataType,Count
pCubeShape1,outMesh,32

The JSON equivalent format would look like this:

{
"pCubeShape1" : {

"outMesh" : "32"
}

}

2026 82

Using Parallel Maya Appendices

If the full detail is requested, then the (abbreviated) output for CSV format will look like this:

Node,Plug,Clean,Value
pCubeShape1,outMesh[0],1,0.0 0.0 0.0
pCubeShape1,outMesh[1],1,0.0 0.5 0.0
...
pCubeShape1,outMesh[32],1,1.0 1.0 1.0

and like this for JSON format:

{
"pCubeShape1" : {

"outMesh" : {
"clean" : 1,
"0" : [0.0, 0.0, 0.0],
"1" : [0.0, 0.5, 0.0],
"..." : "...",
"32": [1.0, 1.0, 1.0]

}
}

}

dbpeek ‐op metadata

Shows node metadata. The default operation shows a list of all nodes containing metadata.

Argument Meaning

summary Shows a single line per node, with metadata indicating how many channels,
streams, and values are present in the metadata.

verbose Shows a detailed list of all metadata on nodes, including a dump in the debug
serialization format for each of the metadata streams.

dbpeek ‐op node

Show select debugging information on DG nodes. See also the “plug” and “connection” operations for
display of information specific to those facets of a node. If no arguments are used then the ones marked
as [default] will all be enabled, for convenience.

2026 83

Using Parallel Maya Appendices

Argument Meaning

datablock [default] Shows the values in the datablock(s)
datablockMemory Shows raw datablock memory. This is independent of the other other

datablock flags.
dynamicAttr Shows dynamic attributes.
evaluationGraph [default] Includes evaluation graph information on the node
extensionAttr Shows the extension attributes
node [default] Shows information specific to individual node types, such internal

caches, flags, or special relationships it maintains. All other data shown is
common to all node types

plug [default] Shows the nodes plug information
skipClean Does not include datablock values that are clean
skipDirty [default] Does not include the datablock values that are dirty
skipMulti Does not include the datablock values that are multi (array) attributes
staticAttr Shows the static attributes
verbose Shows much more detail where available. This will include things such as flags

set on objects, full detail on heavy data, and any extra detail specific to a node
type, such as caches.

dbpeek ‐op nodes

By default, when no detail argument is present, shows a list of all currently registered node types.

Argument Meaning

binary Also includes the IFF tag used to identify each node type in the “.mb” file format

dbpeek ‐op nodeTracking

By default, when no argument is present, shows a list of all nodes created since the last reset along with
a count of how many of each type were created. Output is in the form of nodeType/count pairs, one per
line, with a tab character separating them.

Argument Meaning

reset Erases all of the node tracking statistics.

dbpeek ‐op plugs

Shows information about all of the plugs in a scene. By default, when no argument is present, shows
static plug footprint. A lot of this is only displayed in specially‐instrumented builds, and generally only of

2026 84

Using Parallel Maya Revisions

use internally.

Argument Meaning

details Includes the full plug/node name information in the output. Otherwise only
the total and summary counts are dumped.

group=stat Groups all output by statistic name
group=node Groups all output by node name
mode=footprint Reports size information for currently‐existing networked plugs.
mode=usage Reports dynamic code path statistics, if they have been enabled in the current

build
mode=reset When used in conjunction with “usage”, resets the statistics back to zero.
mode=state Gets unevaluated state information for boolean plugs. Only available on

specially‐built cuts.
nodeType=TYPE Restricts the operation to the node types specified in the argument. This

includes inherited types, for example if the value is “transform”, then the
operation also applies to “joint” nodes, as the node type “joint” inherits from
the node type “transform”. See the node type documentation or the
nodeType command for complete information on which node types inherit
from each other.

stat=STAT If this argument has no STAT, then sorts by the name of the statistic. If this
argument does have a STAT, for example, “stat=addToNet”, then only reports
that statistic. Only available on specially‐built cuts.

Revisions

2026

• No changes

2025

• No changes

2024

• Added Reduce Graph Rebuild section.
• Updated the GPU override section

– More granular clustering of nodes.

2026 85

Using Parallel Maya Revisions

– Nodes can switch from GPU to CPU without re‐partitioning.
– GPU download (read‐back) allows more nodes to run on GPU.
– Removed “blendShape partial component” limitation.
– Removed “Downstream graph nodes require deformed mesh results” limitation.
– Added “Deformers with more than one input/output geometry” limitation.

2023

• Added Partitioning and Scheduling Modes section.
• Updated Python code examples.

2022

• Added Manipulation section.
• Updated the GPU override section

– Added new supported deformer types
– Updated limitations

• Added Skipping Evaluation section.
• Added Fan‐In Evaluation section.
• Added Prune Evaluator API section.

2020

• Updated the dbtrace section to add info about:

– OGSPolyGhosts
– cacheConfig
– evalMgr
– evalMgrGraphInvalid
– peekCache
– peekContext

• Added a link in the dbpeek section to details regarding the new cache operation.

2019

• Updated the Key Concepts section.

– Added more info about the different graphs (DG, EG, SG).

2026 86

Using Parallel Maya Revisions

• Added a section about VP2 Integration and Evaluation Manager Parallel Update.
• Added a section about Tracking Topology for Evaluation Manager Parallel Update.
• Updated the Custom Evaluators section to describe the new evaluators.

– New evaluators:
* curveManager (now with its own subsection)
* cache
* cycle

2018

• Created an Appendices section.

– Added a section that describes the Profiler File Format.
– Moved Debugging Commands section to the Appendices.

• Updated the Custom Evaluators section to describe the new evaluators.

– New evaluators:
* curveManager
* hik

– Added information on isolate‐select and expressions to the Invisibility Evaluator
– Added new deformer types supported in GPU override:

* deltaMush
* lattice
* nonLinear
* tension

2017

• Added section on graph invalidation.
• Added information about different ways to query scheduling information (see Thread Safety).
• Updated the Custom Evaluators section to describe the new evaluators.

– New evaluators:
* invisibility
* frozen
* timeEditorCurveEvaluator

– dynamics evaluator support for Parallel evaluation of scenes with dynamics is now enabled
by default.

• Added Custom Evaluator API section.

2026 87

Using Parallel Maya Revisions

• Added Evaluation Toolkit section.
• Added Debugging Commands section.
• Miscellaneous typo fixes and small corrections.

2016 Extension 2

• Added tip about the controller command.
• Updated Other Evaluators subsection in the Custom Evaluators section to describe the new evalu‐

ators.

– New evaluators:
* transformFlattening
* reference

– deformer evaluator is now enabled by default.
– dynamics evaluator has a new behavior, disabled by default, to support Parallel evaluation of

scenes with dynamics.

• Updated Evaluator Conflicts subsection in the Custom Evaluators section.
• Updated Python plug‐ins scheduling to Globally Serial.
• Updated Render‐Bound Performance subsection in the Profiling Your Scene section.
• Added new images for graph examples.
• Miscellaneous typo fixes and small corrections.

2016

• Initial version of the document.

2026 88

http://help.autodesk.com/cloudhelp/2024/ENU/Maya-Tech-Docs/Commands/controller.html

	Overview
	Key Concepts
	Supported Evaluation Modes
	First Make it Right Then Make it Fast
	Evaluation Graph Correctness
	Thread Safety
	Safe Mode

	Evaluation Graph Invalidation
	Reduce Graph Rebuild
	Idle Actions
	Benefits
	Caveats

	Manipulation
	Manipulation Prevalidation
	Partial Evaluation

	Custom Evaluators
	GPU Override
	Dynamics Evaluator
	Reference Evaluator
	Invisibility Evaluator
	Partitioning and Scheduling Modes

	Frozen Evaluator
	The Frozen Attribute
	Operation
	Setting Options
	Limitations

	Curve Manager Evaluator
	Other Evaluators
	Evaluator Conflicts

	API Extensions
	Parallel Evaluation
	Skipping Evaluation

	Custom GPU Deformers
	Fan-In Evaluation

	Custom Evaluator API
	The Basics
	API Reference
	SimpleEvaluator API Example

	Prune Evaluator API
	PruneEvaluator API Example

	VP2 Integration
	Tracking Topology
	Profiling Plug-ins

	Profiling Your Scene
	Understanding Your Profile
	Profiler Colors
	DG Evaluation
	EM Parallel Evaluation
	EM Parallel Evaluation with GPU Override
	EM Evaluation Cached Playback
	EM VP2 Hardware Cached Playback
	Evaluation-Bound Performance
	Render-Bound Performance
	Saving and Restoring Profiles

	Troubleshooting Your Scene
	Analysis Mode
	Graph Execution Order
	The Evaluation Toolkit

	Known Limitations
	Appendices
	Profiler File Format
	Debugging Commands
	dbcount
	dbmessage
	dbtrace
	dgdebug
	dgdirty
	dgeval
	dgInfo
	dgmodified
	dbpeek
	dbpeek -op attributes
	dbpeek -op cache
	dbpeek -op cmdTracking
	dbpeek -op connections
	dbpeek -op data
	dbpeek -op context
	dbpeek -op edits
	dbpeek -op evalMgr
	dbpeek -op graph
	dbpeek -op mesh
	dbpeek -op metadata
	dbpeek -op node
	dbpeek -op nodes
	dbpeek -op nodeTracking
	dbpeek -op plugs

	Revisions
	2026
	2025
	2024
	2023
	2022
	2020
	2019
	2018
	2017
	2016 Extension 2
	2016

