广州自云站站房 BIM正向设计与应用

■ 梁昊飞 何颂恩 陈思超 黄波 鲍华

□核心看点:广州白云火车站项目总建筑面积庞大,设计布局复杂,涉及多个专业、多个单位的协同工作。针对这些挑战,BIM团队制定了有针对性的BIM应用策略,并将其细化为工作流、工作机制和技术路径,以保障项目的高效执行。其中,正向设计成为项目的核心工作流,通过设计牵头的BIM管理体系、BIM正向设计综合应用实践、BIM助力站线融合以及BIM效益量化分析等方面措施,项目基于BIM技术实现了高效的设计与管理,为复杂工程项目的BIM应用提供了借鉴与参考。

项目概况

广州白云火车站(图1)总建筑面积约45万平方米,位于广州市白云区棠新路,是粤港澳大湾区重点工程,是广州市"五主三辅"中的主要客站之一,也是"轨道上的大湾区"体系的重要节点。站房布置为线正上式,站场规模达11台24线,秉承TOD开发理念,是以普铁为主、高铁及城际为辅、站城融合配套的市区大型综合交通枢纽。

建筑立面造型以"云山珠水,木棉花开"为设计主题,以铝板、膜材结合形成主站房云水"飘带"以及木棉"花瓣"的造型元素。

重难点分析

为了最大程度发挥BIM应用的优势,BIM团队通过深入分析项目的重难点,制定了有针对性的BIM应用策略。

该项目面临的挑战主要有以下五方面:

- 一是项目规模大、功能多、立体综合的竖向布局空间 复杂。
- 二是项目由四家单位作为联合体组织设计工作,每家单位有对应的职责边界,BIM团队担当全专业设计及信息综合应用的角色。项目的各专业工种多、界面复杂,包括不同单位之间的设计范围界面、施工图与深化设计之间的界面,BIM团队需要与各单位多个工种完成设计图纸及设计问题的对接与沟通。
- 三是项目周期长、轮次多,每个阶段的BIM工作需要制定明确的工作目标。

四是项目造型新颖、构形复杂,交接问题复杂,不同系统的相互衔接,需要解决结构、消防、防水、泛光、构造做法等问题。

五是成本控制严格。项目外立面表皮主要为玻璃幕墙、 异形金属幕墙以及膜材,表面积很大,曲面和屋面天窗幕墙 造价高,过程中需要考虑成本因素进行外立面设计优化。

BIM策划与重点应用

针对上述重难点, BIM团队在项目前期进行了详细 策划,并将策划细化为工作流、工作机制和技术路径,保障 项目的高效执行。

建立正向设计BIM工作流

应用阶段与工作内容策划

初步设计阶段: BIM在初步设计阶段启动工作,在完 成建模与碰撞检查等配合各专业的设计工作外,重点解 决构型分析的问题。

施工图设计阶段:在施工图阶段分为外立面和土建 两个主线,基于初步设计的构型分析工作前提,采用BIM 正向设计推进外立面系统和大跨度钢结构等深化工作, 并完成全专业协调。两个主线具体的应用项包括:

外立面部分正向设计主线:外立面构型有理化;统一 各专业定位逻辑;不同外立面系统间的交接构造;碰撞协 调;与设计图深化单位协作深化设计推进;消防、排水等 专项设计跟进;提资及图纸输出。

土建部分伴随式BIM主线:碰撞检查;管线综合;净 高分析;内装效果验证;标识系统效果验证;轨道限界复 核;可视化输出。

统一项目标准

BIM团队制定了项目级的BIM标准文件,包含实施方 案、技术标准、验收标准三大部分,并通过了专家会审,为 设计阶段以及全过程BIM应用提供统一的指导,确保了 整个项目的BIM应用符合一致的标准,提高了工作效率 和协同效果。

BIM正向设计模式

在BIM正向设计模式下,强调各专业在包括二次深 化在内的全设计过程中基于BIM进行设计深化与讨论。 这种设计模式将各专业的设计工作紧密结合,确保设计 的可执行性和一致性(图2)。

基于多软件协同的BIM模型与信息流转计划

从方案造型到深化设计,是一个逐步明确构型逻辑、 结构体系、立面系统拆分、材料构造做法,并且由多个单位 合作完成的过程,每个阶段和问题解决需要有适应该设 计问题的软件,而下游阶段需要对上游的模型信息进行 深化,以保证工作的流畅传递。为此,BIM团队建立了基于 多软件协同的BIM模型与信息流转计划。

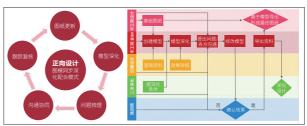


图2 BIM 正向设计模式

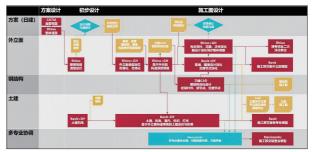


图3 基于多软件协同的 BIM 模型与信息流转

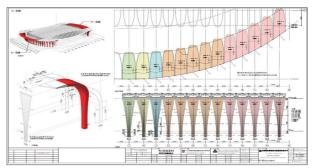
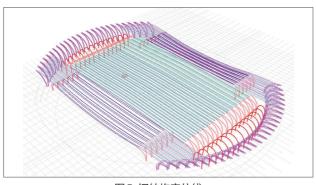


图 4 花瓣几何控制定位原则


图3中,红色块是基于模型的设计工作。其中,外立面 在方案阶段采用了CATIA进行找型, Rhino进行整体造型 的整合。初设阶段重点是构型分析和梳理,为施工图阶段 的深化建模提出系统拆分和定位原则。在施工图设计阶 段,主要使用Rhino+Grasshopper完成造型定位控制,对 造型进行有理化、合规化优化,包括设计构造厚度的考虑。 基于各系统造型定位确定,主要使用Revit+Dvnamo进行 幕墙和屋面设计、节点深化及出图。

蓝色块是过程中的重要沟通协调,包括设计过程中 境外方案设计团队在造型梳理和深化过程的沟通确认, 以及全专业基于BIM整合模型的问题沟通讨论。

黄色块是基于模型输出的重要提资和成果文件,包 括过程中的条件提资、用于施工图成图的图纸输出等。

梳理和控制外立面造型的定位逻辑及造型有理化

对于外立面构型的梳理,分为几何定位与结构单元 两个层面。几何定位包括从统一的定位点到各层级控制 轴线,再到单体和造型的定位控制,细分为屋面、幕墙、花

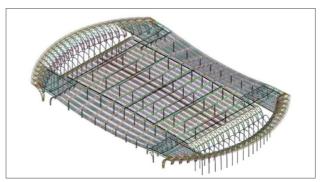


图6 基于钢结构定位线深化后的钢结构模型



图7 花瓣柱-一设计沟通流程

瓣、光谷四个外立面系统,形成《几何控制系统文件》。

图4为花瓣几何控制定位原则。基于定位原则,根据 不同的结构体系(桁架、网架、拱梁等),结合各专业构造厚 度,由造型定位反向推算出结构定位线,提供给结构专业 进行下一步的深化计算和出图。BIM模型导出钢结构定位 线如图5所示。图6是基于定位线深化后的屋面网架和花 瓣柱钢桁架等模型。

建立系统化的沟通机制

站房的深化设计工作中,有四个重要的专项,分别是 花瓣、光谷、屋面、膜结构。由于项目全过程需要对接境外 的方案设计团队和三家国内设计单位,项目组建立了远 程的沟通机制(图7)。一是采用《问题总览表》记录各方沟 通过程和最终结论,以便负责人随时了解项目中的各项 设计决策。二是采用《问题沟通记录》形成详实的沟通调 改情况,便于负责人与相关专业及时沟通对接,方便各专 业跟进具体技术细节。比如,情况最复杂之一的花瓣柱, 涉及钢结构和膜结构、幕墙、屋面的协调问题解决,在过程 中涉及的多方条件落位、各专业定位依据、碰撞冲突解决 方案,都形成了可供追溯的记录(图7)。

在室内设计阶段,发现钢网架屋面和室内铝板百叶 天花的冲突协调,并采取调整百叶定位的方式保证室内 效果。又如,膜结构由专项深化单位进行膜结构龙骨和构 造深化,形成褶皱变化的构造与钢桁架结构的衔接在BIM 模型中进行调整验证,确保每一片模的准确定位。

利用BIM模型数据实时优化造价重点控制指标

为解决幕墙成本控制的问题, BIM团队基于BIM模型 的数据提取优势来进行对应的构件筛选和优化。比如,把 超过6平方米的玻璃幕墙筛选出来,进行分隔优化;通过 明细表统计消防排烟窗的分布和有效面积,满足规范要 求并用于工程量统计。

大面积玻璃天窗的造价很高,当幕墙与水平面夹角 小干75度时则需定义为天窗,在造价控制中需要对大干 2.5平方米的天窗进行优化。针对曲面幕墙特定角度识别 为天窗并控制嵌板面积的工作,借助Grasshopper参数 化插件来辅助识别,并通过Dynamo来快速为每块嵌板 标记面积。

图8 全专业模型

图 9 考虑天花净高与风口定位

图 10 室内漫游模拟

利用BIM模型生成外立面图纸

由于从BIM模型到出图及图纸深化和信息表达的工 作需求,BIM正向设计的成果需要根据各专业的需求进 行定制输出。

建筑专业的立剖面及墙身,可直接基于BIM模型成图 输出。输出给结构专业的成果,包括钢骨结构定位线和与 完成面之间关系的模型、钢结构节点模型,以及导出的二 维视图一并提资。提资给幕墙专业的图纸包括幕墙定位、 分格、检修口预留、排烟窗分布等。提资给膜结构则输出外 花瓣定位模型,专项深化单位基于模型进行二次深化。

重点协调专项

面对复杂的专业衔接问题, BIM团队设立专门的协 调小组,负责处理项目中的重点协调工作。除了建筑、结 构、机电专业,还包括屋面、幕墙、膜结构、精装、标识、铁路 等专业间的协调(图8)。

特殊的走管空间

立体空间的竖向关系复杂,要保证机电管线路由同 时不影响室内空间效果,在项目初设阶段就要结合土建 条件预留走管空间。比如,利用轨道上方的管廊作为水电

管线横跨轨道线路的重要空间,需提前与各专业沟通好 管廊条件并进行预留。再如,从站台层至高架层的管线 路由,需要将管线敷设于钢结构楼梯底部,管线布置优化 后,需提供钢结构开洞条件并追踪落位。

重要空间的室内效果

对于重要的空间,整合室内装修造型和净高的需求, 对管线的综合排布亦是先形成策略,各专业预留条件,为 后续的深化设计提供依据,确保设计效果在深化过程中 得到落地(图9)。

轨道限界

站房建筑与客运服务设施及城市交通配套紧密结 合,站台层中包含的复杂管线与轨道限界的有效性核查 也是工作的重点。在设计过程中,将轨道限界的占位空间 建立为实体的模型图元,实时留意核查是否有任何其他 专业的构件侵入该区域。

可视化沟通与验证

在设计过程中充分利用BIM可视化的优势,各专业 的所有设计验证和沟通均基于BIM模型进行,以确保施 工图深化后的效果与方案一致。

剖透视可以帮助各方快速掌握竖向立体空间的关 系,使各方能够清晰理解竖向空间的结构和关系,从而更 好地进行协作和决策。

通过BIM模型,设计团队可以进行虚拟漫游,模拟真 实环境中的效果,有助于评估室内设计、照明方案等,提前 发现潜在问题并进行调整,确保设计效果符合预期(图10)。

项目创新点总结

设计牵头的BIM管理体系:将BIM应用定制和配合 纳入设计阶段,使BIM成为衔接各方的工具和平台,在整 个项目过程中发挥了关键的推动作用。

BIM正向设计综合应用实践:项目以解决设计问题 为导向,通过BIM正向设计综合应用实践,将多软件综合 运用,形成多样的信息输出形式,满足多专业交互需求。

BIM助力站线融合:在与站线相关的专业合作中,建 立了铁路限界范围,并确保站房多专业设计定位满足限

BIM效益量化分析:项目进行BIM效益量化分析,根 据造价测算需求,实时统计钢结构、异形幕墙及铝板工程 量,并精细反映设计调整对造价的影响,从而在设计决策 中更加科学和经济。通过量化分析,项目有效地将BIM技术 与成本管理结合,提高了项目的经济效益和管理水平。1500