创新实践 | 2024·4 |

数智化助力"换乘之干"快速建造

长沙机场GTC项目施工阶段数智建造实践

■ 中国建筑第五工程局有限公司 卿信强 陈镜丞 熊政华 刘纯硅 中铁建工集团有限公司 姜昊天 湖南省第六工程有限公司 丁虎

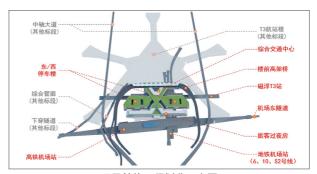
同核心看点:长沙机场改扩建工程综合交通枢纽工程项目采用"数智建造" 理念,以打造创新生产新标杆为目标,将数字化技术融入项目建设全过程;通过 BIM技术与施工管理相结合,在进度控制、方案比选等方面取得了显著成果;使用 4D进度模拟提高了施工效率和准确性;通过仿真模拟和有限元分析,对深基坑工 程进行安全性评估:采用了AR、VR等技术提高施工指导精准度和效率,并利用智慧 工地平台实现了领料流程的数字化和高效化……项目的顺利实施,将为工程建设 行业数字化转型提供有益参考和借鉴。

项目概况

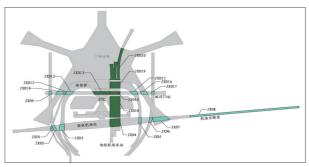
长沙机场改扩建工程综合交通枢纽工程项目位于 长沙市黄花镇,总建筑面积为49.54万平方米,由9个单 体构成,采用空间立体式布局,由中国建筑第五工程局有 限公司(以下简称"中建五局")牵头,联合中铁建工、湖南 六建共同实施。项目建成后将集成4种地面交通、4种轨 道交通于一体,成为国内步行距离最短、换乘效率最高的 机场立体枢纽之一,已被交通部列为加快建设交通强国 "十四五"重点项目,也成功立项住房城乡建设部科技示 范项目。自开工以来,该项目始终坚持绿色化、数智化建 造,受到业界广泛关注,被媒体誉为"换乘之王",先后接 待各级观摩100余次,累计接待12000多人次,并在"数字 住建"调研中得到了住房城乡建设部领导的肯定。

该工程具有以下重难点:一是项目基坑群体量大, 由多个深浅不一、形状各异、支护方式不同的基坑互相贯 通融合而成,快速实施的过程中保证基坑稳定、安全是重 点;二是项目内外部结构立体交叉重叠,上下部结构之间 互相影响制约,科学、有序地施工组织是重点;三是施工 场地面积大、结构多,与外部标段混杂一体,接口多,过程 的施工管控是难点。

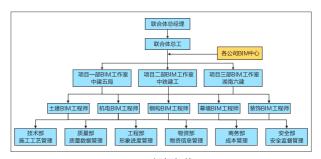
数智化策划概述


该综合交通枢纽工程项目采用"数智建造"理念,以 打造创新生产新标杆为目标,将数字化技术融入项目建 设全过程。项目进场之初,就全面应用中建五局智慧工地 综合管理系统进行数字化管理,实现项目员工、客户及供 方的线上协同办公和可视化远程管控。

项目部成立联合体管理模式,联合体设立BIM中心, 各项目分部设立BIM工作室,组建20余人的BIM团队,以 分工管理、分级协作的模式开展项目的BIM工作,集中解 决四类五轨复杂交通枢纽中心项目的建造难题,为方案 设计、施工推演及工期节约等方面提供有效保障。

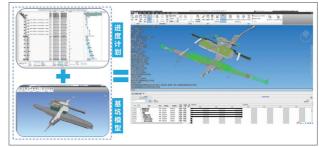

BIM数字化应用

协同建模


通过中建五局自主研发的"中建元协同"平台,实现各 专业协同建模、线上提资,从而及时发现并解决各专业间的 碰撞问题,极大地提升了各专业间的协同效率,使建模效率 提高了近60%。同时,运用中建五局自主研发的BIMBase 轻量化平台对模型进行轻量化处理,有效地解决了BIM设 计和管理过程中的"应用门槛高"与"数据流转难"的问 题,实现了网页端、移动端、客户端三端的5秒快速查看。

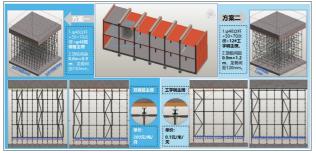
项目单体工程划分示意图

项目主体结构交叉区示意图


BIM 组织架构

土石方算量

机场项目因场地独特,只有现场测量工程师能逐点 测设;深基坑群结构复杂,含30余个坑中坑,标高差异大, 传统方法计算土方量工作量大且有误。为了解决此问题, 项目导入地形图和地质勘探数据至Civil3D算量软件。软 件自动生成地表模型,根据边界、模型和设计标高精确算 量,生成报告。目前,该项目用此软件大幅提高效率并确 保精确性,还具有可视化、方案优化等优势。此方法对类似 工程具有参考价值。


施工动画模拟

依据施工工艺和计划,将施工流程分为不同的工序 和阶段。通过建模软件,确定各步骤的时间顺序和持续时 间。将施工时序关系融入建筑模型,利用BIM软件生成动 画模拟,直观展示施工过程。此外,进行冲突检测和优化, 识别并解决设计与施工中的问题,改进工艺,调整顺序和

土石方算量

4D进度模拟流程

地铁高支撑方案比选

地铁高支模体系方案比选报表

BIM+AR、VR 技术应用

资源配置,以提高效率和降低冲突。向监理、设计和业主等展示模拟成果,帮助他们更好地了解项目预期。在施工前评估各种工艺方案和顺序,寻找最佳解决方案,以提高效率和保证质量。

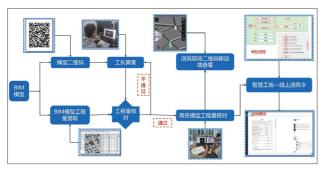
4D进度模拟

在收集建模数据、施工计划和工期时间表后,使用BIM软件建立建筑模型和时间轴。将施工计划和工期与模型关联,细分进度计划,并关联至模型中的构件。生成WBS码,并在Revit模型中添加项目参数。将进度计划导入Navisworks,应用附着规则,实现4D进度模拟。结合BIM模型进行4D模拟有助于项目内控进度、优化施工和资源协调,提高效率。可视化展示给团队和相关方,有助于理解预期进度。

方案比选

在地铁标准段主体结构的高大支模方案设计中,项目团队提出了两种方案:

方案一:采用 ϕ 48立杆+50×70次楞+ ϕ 48双钢管主楞,顶板间距0.6米×0.9米,龙骨间距150毫米。


方案二:采用 φ 48立杆+50 × 70次楞+12#工字钢主 楞,顶板间距0.9米 × 1.2米,龙骨间距120毫米。

在BIM软件Revit中,项目团队建立了两种支模体系模型,并利用软件自带的工程量统计功能,自动导出两种不同方案的工程量报表。

通过比较分析,确定了最优方案:高大模板的主楞采用12#工字钢,总造价为945.4元。与方案一相比,可以节约354.6元成本。地铁高支模区域约3.86万平方米,整体可节约25万元/平方米经济成本。

1倍深基坑范围内三维数值安全性分析

西停车楼位于磁浮一倍基坑内,按照图纸要求,磁浮 主体结构和围护结构完成后,再进行西停车楼底板、主体 施工。项目开展了深基坑的仿真模拟,使用迈达斯软件建 立磁浮与西停车楼基坑模型,进行三维有限元安全性分

线上限额领料流程

深基坑监测系统

析。分析结果显示可行,经过专家论证,西停车楼具备提 前插入施工的条件。因此,该处提前插入施工90天。

BIM+AR、VR技术应用

通过AR、VR技术、物联网大数据及智能设备等新兴 信息技术和手段,虚拟化现场施工。相关项目信息以虚拟 3D+裸眼3D的形式出现,包括各构建的具体信息、距梁、 距柱、距离顶板的距离等,并可进行测量,辅助指导现场施 工,为施工提供了很大便利。

智慧工地

线上限额领料

建立高精度的BIM模型后,在模型上快速导出分项 分部工程量,与工程算量进行比对,通过后可在指挥管理 平台线上限额领料,准确把控现场浇筑用量,合理安排浇 筑计划。同时,整个流程涵盖了从申请领料到审批和实际 操作的全过程,实现了领料流程的数字化、透明化和高效 化,提高了现场施工的管理效率、降低人为错误和遗漏,并 对材料的使用情况进行实时监控。

自动监测

针对地铁、磁浮、高铁站房重型结构施工和复杂基坑 实时监控的问题,该项目采用了自动化和高智能的监测 系统。这些系统能够实时监测施工中的各项数据,并将数

高支模监测系统

AI自动识别

据接入云筑智联管理平台,方便在电脑、网页和手机上实 时查看。此外,数据自动采集与分析、预设阈值实现自动报 警等功能,大幅提高了生产安全检查的效率和准确性,为 项目的危大工程施工提供了有效的安全保障。

AI自动识别

针对现场作业区域大、环境复杂、巡检耗时长、监控数 据维度有限、人工识别困难等问题,该项目利用摄像头资 源,结合AI智能边缘盒子和算法,实现视频中人体异常行 为和目标物品的有效检测,并发出警报。实时喊话警告功 能使监控从被动变主动,实现事前预警、事中常态检测和 事后规范管理,为安全管理提供了有力支持。

总结

该项目通过BIM技术与施工管理结合,在进度控制、 方案比选、成本节约和安全性分析方面取得了显著成果。使 用4D进度模拟提高了施工效率和准确性。利用BIM技术对 不同方案进行模拟和对比,确定了最优方案,并节约了成 本。通过仿真模拟和有限元分析,对深基坑工程进行了安全 性评估。此外,还采用了AR、VR等技术提高施工指导精准 度和效率,并利用智慧工地平台实现了领料流程的数字化 和高效化。这些技术手段为我国建筑行业提供了有益的参 考和借鉴。易