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Abstract
Automated robotic construction of wood frames faces significant challenges,
particularly in the perception of large studs and maintaining tight assembly tol-
erances amidst the natural variability and dimensional instability of wood. To
address these challenges, we introduce a novel multi-modal, multi-stage percep-
tion strategy for adaptive robotic construction, particularly for wood light-frame
assembly. Our strategy employs a coarse-to-fine method of perception by inte-
grating deep learning-based stud pose estimation with subsequent stages of pose
refinement, combining the flexibility of AI-based approaches with the precision
of traditional computer vision techniques. We demonstrate this strategy through
experimental validation and construction of two different wall designs, using
both low- and high-quality framing lumber, and achieve far better precision than
construction industry guidelines suggest for designs of similar dimension.

Keywords: Adaptive Robotics, Robotic Construction, Perception, Machine Learning

1 Introduction
Traditional approaches to wood frame construction and prefabrication depend heavily
on manual labor and assembly-line processes, in which parts are moved from station to
station and assembled by teams of workers with high-contact tools like mallets, nail-
ers, and tape measures. While well-understood and suitable for high-mix, low-volume
production, these approaches can be slow and error-prone. While there is growing
exploration into how automation and robotization can accelerate the pace of wood
frame construction, the industry faces hurdles in widespread adoption and standard-
ization. Notably, existing commercial solutions optimized for high-volume, low-mix
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scenarios and standardized designs face significant challenges for accurate fabrication
of highly varied designs amidst the natural variability and dimensional instability of
wood [1]. This emphasizes a need for adaptive automated systems that can handle the
variation in materials, parts, and processes through the use of perception and modify
their actions accordingly. Although robotic solutions in this area are often limited to
one-off proofs-of-concept, there is a thriving discussion on adaptivity which can help
to address these challenges.

In this work we explore how a multi-modal, multi-stage perception paradigm can
enable the automation of wood light-frame assembly tasks. We leverage a strategic
coarse-to-fine method of perception, employing consumer-grade sensors, to iteratively
refine the precision and adaptability of a robotic construction system specifically
geared towards large studs. We demonstrate our approach on a real-world construc-
tion project using both low- and high-quality framing lumber, requiring the system to
be adaptive and flexible, as shown in Figure 1. We focus on factory-based construc-
tion where components or structures are first assembled inside a factory before being
installed onsite.

We also employ a basic form of human-robot collaboration that balances automa-
tion with human skill. In our setup, a robot is responsible for picking, placing, and
holding studs while a construction worker performs the tasks of loading, inspecting,
and fastening them. While this introduces several challenges for variability and inac-
curacy, it embraces the benefits of an adaptive robotic construction system, discussed
later in more detail. This division of tasks also reflects an aspiration to integrate our
process into an existing factory-based construction line by replacing a manual wall
framing station with a robotized one. Our approach aims to facilitate adoption of
automation in such environments without the immediate need for full autonomy, and
leverages the dexterity and mobility that skilled human workers bring to the table.

Our work contributes the following:

• A novel multi-stage perception strategy including deep-learning based models
trained using synthetic data capable of finding, measuring, and manipulating
wooden studs with the precision required for industrial construction.

• Experimental validation of the need for a multi-stage perception strategy and an
experimental demonstration of adaptive robotic construction of two wood frame
walls using both low and high-quality framing lumber.

• A strategy for incorporating robotic wall framing into existing factory-based
construction lines by transitioning from manual to robot-assisted assembly stations.

• Finally, a new benchmark for positional error limits in the robotic construction of
wood frames.

The paper is structured as follows: We first review prior work in automation for
factory-based construction and highlight challenges and opportunities for automated
construction workflows. We then provide an overview of our physical workcell setup
and dive into our method of multi-stage perception. We conduct experiments for
each stage of perception and demonstrate the precision of our adaptive robotic con-
struction system for two real-world walls, using both low- and high-quality framing
lumber. Finally, we discuss insights gleaned from this work and future work in robotic
construction.
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Fig. 1 Mid-assembly snapshot for wall with cantilever detail and high-quality lumber. Shows stud
in grippers after measurement stages but before placing stage.

Note that the term pose is used throughout this paper in its robotics context,
referring to the 6-dimensional combination of position and orientation.

1.1 Related Work
Wood is a common and natural construction material that curls, warps, expands, and
deforms. Additionally, there are no set standards for construction tolerances in wood
framing, though most sources suggest limiting vertical and horizontal framing error
to < 1/4 in (6.35 mm) per 8 ft (2.44 m) for manual construction [2–4]. While the
manufacturing industry typically expects part dimensions and assembly conditions to
be extremely precise (sub-millimeter), the wooden lumber used in construction are
imprecise and dimensionally unstable, posing significant challenges for automation. To
that end, automated wood frame prefabrication is typically limited to tasks like mate-
rial preparation (i.e. cutting or shaping parts) and assembly of standardized designs;
high-mix scenarios and dexterous tasks still depend primarily on manual labor [1].
Adaptive automation systems, however, could help to navigate the inherent variabil-
ity and dimensional instability of wood and not only reduce construction error but set
a modern standard for construction tolerances in robotic wood framing.

The challenges of robotic wood frame construction are the subjects of ongoing
research. Pioneering research at ETH Zurich has demonstrated digital construction
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of many parametrically-designed wood frame assemblies, mitigating some of the chal-
lenges above by employing high-quality framing lumber [5–8]. Other researchers have
attempted to reduce construction error by leveraging motion planning for large, high-
aspect ratio framing elements [9, 10], offsite prefabrication and adaptive machining
processes to control the geometry of wooden parts [11, 12], and mechanically or force
compliant joining techniques [13, 14]. Achim Menges [15, 16] makes a theoretical argu-
ment to embrace the material realities of wood and adopt a sensor-driven approach
wherein both the available materials and the fabrication process influence the final
product. Similar work has focused on scanning unpredictable natural materials during
the assembly process [17] and on developing a database of 3D scanned parts [18–20] to
optimize their placement in an assembly with respect to design goals and previously
placed parts.

In the broader scope of adaptive robotic workflows, computer vision has been imple-
mented to great effect. This is especially true for grasping and bin-picking tasks in
warehouse robotics, where an RGBD camera is often used to adaptively pick objects
of interest from structured or unstructured environments. Du et al. [21] have con-
ducted a comprehensive review of this area of computer vision-based robotic grasping
processes, and identify object localization, pose estimation, and grasp estimation as
the core components to achieving this task. Many pose estimation models are trained
on synthetically generated data, constructed by simulating different views or positions
of 3D CAD models [22, 23]. While many pose estimation models focus on small-scale
objects, our research extends those techniques to the larger scale required for con-
struction materials, drawing inspiration from Tish et al. [24] and their strategy for
adaptive robotic construction of large façade panels.

In comparison to previous approaches, our approach to robotic wood frame con-
struction focuses on harnessing the latest AI techniques to enable a more flexible
workflow capable of dealing with the uncertainty inherent to working with wood as
a material and alongside a manual workforce. We use deep-learning perception tech-
niques to locate studs in the workspace, but augment these techniques in a multi-stage
strategy with more traditional approaches to enable the higher precision required for
our target tasks. Our approach is able to handle wood studs of varying sizes, tex-
ture, and shape. We believe that the use of deep-learning based techniques makes our
approach more suited to the variability of the wooden studs and the variability in the
environment as well. Finally, we demonstrate in an experimental robotic workcell that
our approach achieves significantly higher precision for construction of wood frames
than industry guidelines suggest, as shown in Figure 7.

2 Workcell Setup
To demonstrate the efficacy of these techniques, we chose the task of constructing full-
size wood frame walls using both high- and low- quality framing lumber (see Section
4). We then designed and built a robotic workcell integrating industrial robots, sensors,
end-effectors, and auxiliary equipment needed to execute such a task, as shown in
Figure 2. We mount a KUKA KR60 industrial robot on a KL1000 linear unit with
stations for picking and placing situated in front of it. A picking table, from where
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Fig. 2 Workcell layout in simulation with detail of end-effector and wall with doorway condition.

studs are picked up, is horizontal while the placing or assembly table is tilted 80°
off horizontal to improve its reachability by the robot. The end-effector is pitched 5°
on the flange X-Axis to improve singularity avoidance and two pairs of custom two-
stage jaws attached to Schunk PSH grippers are mounted at 45° on the flange Y-Axis.
Additionally, an ATI Force/Torque sensor is mounted between the end-effector and
the robot flange. We use a closed-source robotics research platform to both simulate
and drive our robotic construction process in the real world, creating a digital twin of
the workcell, robots, sensors, fixtures, and environmental features [25].

2.1 Camera Configuration
At the core of our multi-stage perception strategy is a comprehensive vision system.
An overhead camera, mounted above the picking station, provides an “eye-in-the-sky”
view of the picking area. This camera is used for the initial perception stage of stud
pose estimation. To capture a 2.74 m (9 ft) stud with 250 mm of buffer on either side,
the overhead camera, which had a depth field of view (FOV) of 70° × 55°, must be
mounted at least 4.3 m above the table, which is quite far from the part but still within
the 9 m working range of the camera. We mounted it to a ceiling truss 4.67 m above
the table. Further engineering implications of mounting the camera at this height are
discussed in Section 3. To reduce reflections that affect depth readings, the table and
surrounding floor area are covered with black fabric. For the subsequent stages of pose
refinement, two additional cameras are needed. A tool camera is mounted in an “eye-
in-hand” configuration on the end-effector to capture close-up, high-accuracy depth
images when grasping. A sideways camera is mounted to the side of the pick table to
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Fig. 3 Left: Detail photo showing entire end-effector, tool camera used for centerline estimation
stage, and 2-stage dual grippers with shortest stud grasped at its center. Right: Sideways camera is
shown measuring the in-hand Y-offset of a typical long stud.

measure the offset of a stud held in the grippers. The stud to lens distance for both
cameras is maintained at roughly 600 mm for optimal imaging.

The L515 LiDAR camera, shown in Figure 3, was chosen for its high maximum
range and reduced depth error over long distances. To discern between the common
nominal lumber types of 2x4 (38 x 89 mm), 2x6 (38 x 140 mm), and 2x8 (38 x 184
mm), the depth error at a 4 m distance needed to be less than 22 mm. The L515 depth
measurements have an error and standard deviation less than 15 mm at distances up
to 9 m. While multiple LiDAR cameras in the same workcell can cause interference
issues, we observed few problems due largely to physical line of sight obstructions.

2.2 Studs and Studpacks
In production, studs are manually loaded by a human worker onto the picking table
(1 to 4 studs at once) following a known sequence and placing them near the center of
the table; those parts are, later, picked up and manipulated by a robot. Moreover, the
absence of fixtures or automated part feeding systems means that parts can be loaded
randomly onto the picking table, posing challenges for traditional, fixed automation
systems that depend on precision and consistency. Instead, perception is required to
identify and locate parts. This approach is core to the concept of adaptive robotics,
wherein sensing and artificial intelligence offer flexibility to a robotic workcell. This
approach helps smooth the gap between manual and automated processes, incorporat-
ing the skills of an existing workforce at the ends of a robotized construction process.
This suggests a path for quicker adoption of automation in industry, promoting a
collaborative rather than fully autonomous or fixed approach.

We also group adjacent studs that share a primary axis, as shown in Figure 8,
using contact graph analysis, allowing them to be treated as a single component – a
studpack – once preassembled and screwed together by a construction worker. While
studpacks are a common design feature in wood framing, walls are normally built one
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stud at a time, rather than with in groups. In this work, there are several advantages.
This strategy decreases the total number of studs and increases the diversity of their
geometrical arrangements in the assembly. For workers, this means different parts can
be more easily distinguished during loading and grouped parts be prefabricated at a
manageable human-scale, in terms of total mass and dimension. For perception, AI
models must be trained on a somewhat larger dataset of unique parts. The grouping
strategy employed: balances the maximum payload of the robot and its effect on reach,
since many studs must be placed near the extremities of the robots Cartesian range;
attempts to respect human ergonomics and ensure a manageable carry weight for
workers during loading, resulting in part masses that ranged from 1− 25kg; and tries
to provide a graspable region on each part that fits within the gripper jaws and ensure
that the grippers can open after placing a part without colliding with an adjacent
one. Additionally, the resulting studs and studpacks vary in length from 0.5 to 2.6 m
and arrangement, with L, U , I, and C -shaped cross-sections for studpacks composed
of 2-5 individual studs. Per the design, all parts feature only square, or orthographic,
end cuts.

2.3 Assembly Process
The assembly process is diagrammed in Figure 4. For each stud loaded into the picking
area, the automated system then estimates its pose using the overhead camera and
estimates its centerline using the tool camera. The robot then picks up the stud and
transports to the sideways camera to measure the in-hand offset, then to the placing
station for final placing while monitoring contact; the robot and control system then
halt. With the robot now acting as a fixture, a human worker enters the workcell and
visually inspects the part for pose errors and provides measured corrections to the
robot, repeating as needed. When complete, a worker located safely behind the placing
table then fastens the studs to the plywood substrate, driving screws into the studs
through labeled, predrilled holes. Note that the construction drawing is printed onto
both surfaces of the plywood at 1:1 scale, serving as a visual aid for these workers.
Once the worker is finished, they exit the workcell and the robot releases the stud,
retracts the end-effector, and returns to the picking table. This process then repeats
until all parts are assembled.

3 Multi-Stage Perception
Two challenges in the development of adaptive robotic assembly technologies for con-
struction are the large scale of the parts being assembled and the relatively tight
tolerances in the assembly. As noted above, a typical tolerance in the construction of
wood frames is roughly 6 mm, which may seem easy to achieve. However, this dimen-
sion represents roughly 0.22% of the length of a standard 2.74 m (9 ft) beam. This
very small ratio of tolerance to overall length is a challenge for many perception tech-
nologies, but especially for vision systems, which can be affected by sensor noise at
large distances and restrictions on image resolution. Moreover, capturing such large
studs requires cameras to be positioned further away, reducing pixel accuracy and
complicating the assembly process.
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Fig. 4 Robotic construction process starting from top left. Shows robot actions, such as Move To
Home, perception stages, such as Estimate Pose, and devices in the workcell, such as Robot and
Overhead Camera.

3.1 Coarse-to-Fine
To tackle these challenges, we developed a multi-stage perception method which pro-
gressively increases resolution along critical dimensions and refines pose estimations,
as shown in Figure 5. This “coarse-to-fine” strategy has several advantages. It allows
the system to balance the flexibility of the AI-driven first stage with the accuracy of
traditional methods in subsequent stages. Thus, each stage is highly-specialized in one
aspect of the pose estimation process, making the overall process robust to the vari-
ability of wood and able to achieve the high-precision required for robotic construction
tasks. This nuanced approach of trading off flexibility and precision at different stages
addresses the unique challenges of robotic wood frame construction and leverages the
strengths of both AI-driven and traditional measurement techniques.

First, we employ a deep learning model for initial pose estimation using the over-
head camera. We then refine the X, Y , and Rz components of the initial pose by
measuring the centerline of the stud using the tool camera before it is grasped and
measuring the in-hand offset of the stud using the sideways camera after it is grasped.
Given that the stud lies flat on a table, the Z component of its position relative to
the table is equal to its depth (assuming it’s accurately identified), while both the Rx
and Ry components of its rotation are nearly zero and may be ignored. Once a stud
is picked accurately, we can generally assume it will be placed accurately, however, a
final stage of force-based contact detection was added to mitigate calibration error and
stack-up of errors caused by dimensional variation of studs and assembly tolerances.
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Fig. 5 Left to right : Overhead Perception, Centerline Estimation, and Offset Estimation showing
pose of camera relative to stud (top) and typical thresholded depth image (bottom) for each stage.

3.2 Initial Pose Estimation
The Initial Pose Estimation stage locates parts on the table using a depth image
captured from a ceiling-mounted camera. This image shows the entire stud and is used
to approximate its pose prior to further stages of refinement.

The adaptive assembly process begins with a deep learning-based pose estimation
algorithm, described in Koga et al. [25]. This algorithm uses a DenseNet architecture to
regress a depth image taken from the overhead camera into a 6-DOF pose for the stud
in the world frame, a technique that has demonstrated effectiveness in a variety of AI-
driven perception tasks [26]. Note that we’ve adapted this implementation to return
a single grasp pose at the top center of the stud, rather than infer multiple possible
grasp poses from a single image. The model is trained on simulated data, generated by
randomly placing the CAD model of the stud in the picking area, capturing a depth
image using the overhead camera, converting this to a depth-thresholded orthographic
point cloud to remove background objects (such as the table) and isolate the stud,
and then by computing a grasp proposal for the stud therein. This proposal coincides
with the 3D center and orientation of the point cloud, to which we add half the depth
of the stud to get its top for grasping downstream. As described in Koga et al., this
training step is performed 600,000 times for the set of parts in a given assembly and
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takes roughly 12 hours on a Nvidia V100 GPU. A typical point cloud derived from
this depth image of a stud is shown in Figure 6. The simulation incorporates Perlin
noise to bridge the gap between synthetic and real-world data, ensuring the model’s
robustness in real-world applications.

However, the perception model architecture is constrained to 256 x 256 pixel depth
images, which, at the time, could not easily be increased. In bin-picking or small-scale
assembly tasks, this resolution normally provides an acceptable degree of accuracy
balanced with training efficiency. However, at the distance of our overhead camera,
described in Section 2, the accuracy of the pose estimates is considerably low. Each
pixel in the depth image represents a 14.4 mm square on the table, accurately locating
an edge or a corner becomes unfeasible, as this dimension is greater than our assembly
tolerances and industry guidelines.

Acknowledging these limitations, we opted for a multi-stage approach that aligns
with the realities of current factory environments, where implementing advanced,
high-resolution systems might not be immediately feasible due to cost, complexity,
or integration challenges. Although this approach may seem less sophisticated than a
single AI-driven stage, it allows for the use of readily deployable AI models supple-
mented by traditional perception techniques. Moreover, this approach could facilitate
the adoption of automation in real-world manufacturing environments and enable
incremental improvements alongside advances in AI and sensor technology. With the
availability of higher resolution images, such as 512 x 512 pixels, or industrial-grade
sensors, it may be possible for pose estimates provided by this stage to be accurate
enough that subsequent stages of refinement can be avoided entirely.

In our experiments we found that subsequent stages of perception provided accept-
able results as long as the initial pose estimate was within 150 mm for X and Y and
within 15° for Rz relative to the center of the table. The pose for studs positioned near
the edges of the table proved more difficult to estimate using the chosen method, sug-
gesting an optimal region of interest within the camera’s view (and smaller than we
initially expected). Hence, we defined the loading area carefully so that studs would
start within this region. Then, when we encountered an obviously incorrect estimate,
we simply manually relocated the stud within this region and tried again.

3.3 Centerline Estimation
The Centerline Estimation stage ensures accurate picking by capturing a depth image
with the tool camera from above the picking table origin or previously pose. This
image shows an uninterrupted section of the stud’s grasping area, allowing for the
calculation of the stud’s centerline for precise picking.

Because studs are generally much larger than the captured image, they appear to
clip at the edges. The center and rotation estimation are achieved through a two-stage
Principal Component Analysis (PCA) of the point cloud returned from the depth
image from the tool camera. The first stage is used to transform the point cloud into an
axis-aligned 3D space and to throw out any points that exceed our variance threshold.
The second stage is performed on the transformed point cloud derived from the first
analysis. The first eigenvector from this analysis gives the vector of the centerline of
the stud, with which we can refine Rz. Using the mean of the point cloud and the
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Fig. 6 Left, top and bottom: Example point cloud for a typical stud, converted from a depth image
taken by the overhead camera during Initial Pose Estimation stage. Right : Example point cloud for
a typical studpack showing estimated grasping pose after Centerline Estimation stage.

known position of the tool camera, with which we can refine the X component of the
stud’s center. The result of this process for a typical studpack is shown in Figure 6.

This two-stage process is useful for removing artifacts from the camera frame in
the point cloud. Once transformed into the centered and axis-aligned space from the
first analysis, a box clipping method trims the parallelogram-shaped point cloud into
a rectangle to maintain the accuracy of the centerline vector estimation. The need for
this trimming process is mitigated by aligning the camera’s axes with the stud’s axes,
estimated using the ML process. This process of alignment is not possible in every
circumstance, however. In the rare case that a notch or other feature produces a non-
continuous width in the camera view, a similar method is used to estimate the center
and rotation of the stud from its rectangular bounds, rather than relying on the PCA
analysis. In this analysis, the centerline is assumed to be parallel to the long edges
and the center estimation is the midpoint of the diagonal.

For short studs (< 600 mm) that can easily fit into the tool camera frame, a visual
servoing method is used to ensure that the entire stud is visible before starting the
refinement process. The method checks whether an object exists at the edge of the
depth image and, if so, steers the robot above the previous position and in the direction
of the violated edge. The estimated center and on-table rotation are used as the target
point for the picking operation. While an accurate Z coordinate of the center point is
typically returned by the function, we use the known heights of the pick station table
and the stud, extracted from their CAD models, instead to prevent collisions with the
picking table.

3.4 In-Hand Offset Estimation
The In-Hand Offset Estimation stage ensures accurate placement by using a sideways-
mounted camera to capture a a depth image of one end of the stud. Using this image,
we can measure the distance of the end of the stud to the grasp location, ensuring the
stud is placed accurately based on where it was grasped.
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With the stud firmly grasped, the Y component of the pose can be refined by
measuring the offset along the longitudinal axis of the stud. One end of the stud is
gradually passed in front of the sideways camera and stopped when its bottom edge
reaches the horizontal centerline of the image, using traditional depth thresholding and
edge detection techniques to do this. From this position, we subtract the Z component
of the camera position from that of the Tool Center Point (TCP), thus measuring
the distance from the TCP to the lower edge of the stud. Ideally, because the stud is
grasped at its geometrical center, this distance is equal to half the total length of the
stud. So, to calculate the actual in-hand offset from the ideal, we simply subtract half
the length of the stud from our measurement. This offset is then added to Y component
of the grasp transformation matrix, which locates the grasp in the coordinate system
of the stud, and enables accurate placing downstream.

Since we have carefully measured and cut studs to their designed lengths ahead of
time, we need only perform this measurement once. In a scenario where cut lengths
are not guaranteed to be accurate, both ends of the part must be measured either
simultaneously, such as with a second camera, or sequentially, such as by flipping the
part and repeating this process.

3.5 Force-based Contact Detection
The Force-based Contact Detection stage further ensures accurate placement against
an imperfect work surface by monitoring contact forces using a Force-Torque sensor
on the end-effector. This ensures the part securely abuts the table or adjacent parts
before being fastened.

Before placing a stud, we assume that its pose in the gripper is well-known, and
that both the end-effector and place-table have been well-calibrated prior to program
start. To compensate for any remaining translation and rotational error (< 3 mm,
0.1°), we implement contact monitoring. During placing, the stud is translated along
a series of approach vectors towards its final pose until it either reaches that pose
or abuts the table or an adjacent stud, at which point a force-monitoring algorithm
identifies that contact has been made and halts the motion command. After the robot
has stopped moving, the stud is considered "placed".

To compensate for both sensor bias and gravity and to isolate contact forces on
each approach, we first take a contact-less reading from the sensor then subtract it
from subsequent readings. To filter noise and identify an upward trend consistent
with contact, we use an exponentially-weighted moving average for each force-torque
component and their magnitudes. Taking advantage of some material compliance in
the end-effector, we also allow the robot to press the stud against the table and
“flatten” any rotational errors caused by deflection in the end-effector or due to poor
calibration. We also subtract the actual position of the stud from its design position
to calculate the accumulated global drift of the assembly.

3.6 Final Assurances
To verify the precision of stud placement after the previous stages, a human worker
conducts a visual inspection of the stud before the robot releases it, as noted in Section
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Fig. 7 Low-grade studpack after being placed by the robot, showcasing high-precision of our method.
Design drawings printed on wall for reference.

2. In the event of a minor error, the worker measures it by hand and inputs the
necessary Cartesian offsets into the control terminal, which the robot applies after they
exit the workcell. This corrective loop continues as needed. For severe errors, such as a
collision or incorrect part orientations, the worker inputs a reset command, prompting
the robot to return to the pick table, release the part, and restart the entire process.
While we intend to automate this stage in future work, it was largely unnecessary in
practice due to the high accuracy of previous stages.

4 Experiments
We conducted experiments in simulation and reality to evaluate the efficacy of our
method. We assess each perception stage by having the robot pick up a stud and
place it in a known, albeit randomized, location 10 times, running its estimation
function 10 times. We then construct two light-frame walls to demonstrate the practical
application of this technology.

4.1 Stage Evaluation
Two conditions were tested for the centerline estimation experiment: one where the
overhead perception stage provided a valid result and the camera can be "aligned"
to the stud; and another where it failed and the camera must be "centered" over the
table. This allows us to capture the shortest distance between the actual centerline of
the stud and the estimated center point, in addition to any errors in on-table rotation
(Rz). For the in-hand offset estimation, the stud was grasped from known locations
along the length of the studpack and passed in front of the fixed camera as previously
described.
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Fig. 8 From left: Based on 2D construction drawings for a given wall (first), we create a 3D model
of the entire assembly (second) and, then, identify unique studs and studpacks (third). Note that
several unique parts with varying geometries are shown, some of which are used more than once in
the design. Data needed for robotic assembly, such as part pose and name, is then saved to a JSON
(fourth).

These experiments highlight the necessity and effectiveness of a multi-stage
approach, as in Table 4.1. In the initial pose estimation stage, the average error was
2.15 mm and 11.08 mm along the X and Y axes. Additionally, results showed con-
siderable variance, with 14.01 and 76.31 mm variance for X and Y axes and 0.05° for
Rz. Through the subsequent centerline and offset estimation refinements, we reduce
these errors to < 1 mm in both positional dimensions and achieving nearly perfect
rotational estimations. The precision of the results also improves dramatically, with a
full variance of results in X and Y of 4.17 mm and 2.73 mm, respectively, and a very
low standard deviation across the board. Note that these figures are well-below the
established error limits suggested for the construction of wood frames.

When loading studs onto the pick table, their shortest and longest edges were
aligned perpendicular (±15°) to the world X and Y axes. This setup limited the
number of pixels available for Y-estimation during overhead perception, as shown in
Figure 9. Interestingly, the in-hand estimation error is 43% that of the centerline
estimate despite its pixel resolution being slightly larger.

Experiment Notes Axis Units Average STD Variance
Pose Estimation - X mm 2.15 1.72 14.01
Pose Estimation - Y mm 11.08 9.01 76.31
Pose Estimation - Rz deg 0.012 0.009 0.05

Centerline Refinement Aligned to origin X mm 1.45 0.71 4.61
Centerline Refinement Aligned to stud X mm 0.93 0.70 4.17
Centerline Refinement Aligned to origin Rz deg 0.005 0.008 0.034
Centerline Refinement Aligned to stud Rz deg 0.0005 0.0003 0.002
In-Hand Refinement - Y mm 0.40 0.33 2.73

Table 1 Dimensional error measured in experiments.
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Fig. 9 Estimated position of stud (points) relative to ground-truth position of stud (origin), showing
spatial trends in error for Overhead Estimation stage (left) and combined Centerline and In-Hand
Estimation stages (right). Simulated estimates in black, real-world estimates in red. Right: X-Axis:
Centerline Error, Y-Axis: In-Hand Error

4.2 Wall Construction
We built two types of walls: a 1.83 x 2.74 m (6 x 9 ft) wall with a doorway header
condition and a 2.74 x 2.74 m (9 x 9 ft) wall with a cantilevered upper section. These
walls are typical in a factory-based modular construction project and of manageable
dimensions for our robots and workcell. Importantly, they were also chosen because
they include a modest range of stud configurations and geometries typical in wood
frame construction, as shown in Figure 8. The first wall was constructed using low-
grade framing lumber which featured knots, curling, and warping. The second wall
was constructed using clean, kiln-dried poplar with excellent dimensional stability. For
both walls, additional tolerance of 1 mm was created at notched joints to ease tight-fit
assembly conditions for warped and imperfect studs.

The framing models for these walls were extracted from a larger Building Informa-
tion Model (BIM) and come from a partnership with a local construction company on
a real-world project. We extracted the physical properties (i.e. mass, center of mass),
geometrical properties (i.e. dimensions, center of geometry), and target pose from the
framing model and define the assembly sequence, approach vectors, and grasping pose
for each stud. Finally, we export this data to a JSON file, export a mesh of each stud
from a common origin, and then fabricate the physical studs for assembly experiments.
From the CAD model we also generate a mapping of screw locations for each stud
and, then, drill thru holes in the plywood substrate to facilitate a more intuitive and
physically easier fastening process.

Images of the two completed wall frames, with detailed mid-assembly images high-
lighting a tight insertion task and an eccentric gripping condition are shown in Figure
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Fig. 10 Top left: Doorway wall with low-quality wood. Bottom left: Cantilevered wall with high-
quality wood. Top right: Tight fit insertion task. Bottom right: Complex grasp-spanning task.

10. All studs were successfully placed as designed, and our method consistency deliv-
ered results below the 6 mm tolerance given by the force-based contact detection,
ensuring there were no unwanted gaps in the assembly or misaligned parts. Although
we had planned for a human worker to inspect the stud and suggest pose corrections
after placement, parts were place precisely enough that those corrections were not
needed.

5 Conclusions
This work demonstrates a novel multi-modal, multi-stage perception strategy for
adaptive robotic construction of wood frames that is precise, robust to the inherent
variability of framing lumber and manual work, and which can handle reasonably
diverse stud configurations. We provide a viable model for incorporating the skills,
dexterity, and mobility of human workers in a factory-based construction environment
that’s transitioning from manual processes to ones that are robot-assisted or fully
automated. We show that balancing the flexibility of AI-driven pose estimation tech-
niques and the precision of traditional vision-based measurement techniques can help
address the unique challenges of robotic construction. Moreover, we show that higher
accuracy than is typically suggested for manual wood frame construction is achievable,
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even when using inexpensive sensors and low-grade framing materials. Thus, we offer
our results as a sub-millimeter benchmark for limiting error in robotic construction of
wood frames. In conclusion, our work represents a significant stride towards overcom-
ing the barriers to the adoption of robotic solutions in wood frame construction, and
we are eager to see how this strategy can be scaled to meet the growing demands of
this industry.
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