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Abstract—Nonuniform grid refinement plays a fundamental
role in simulating realistic flows with a multitude of length scales.
We introduce the first GPU-optimized implementation of this
technique in the context of the lattice Boltzmann method. Our ap-
proach focuses on enhancing GPU performance while minimizing
memory access bottlenecks. We employ kernel fusion techniques
to optimize memory access patterns, reduce synchronization
overhead, and minimize kernel launch latencies. Additionally, our
implementation ensures efficient memory management, resulting
in lower memory requirements compared to the baseline LBM
implementations that were designed for distributed systems. Our
implementation allows simulations of unprecedented domain size
(e.g., 1596× 840× 840) using a single A100-40 GB GPU thanks
to enabling grid refinement capabilities on a single GPU. We
validate our code against published experimental data. Our
optimization improves the performance of the baseline algorithm
by 1.3–2X. We also compare against state-of-the-art current
solutions for grid refinement LBM and show an order of
magnitude speedup.

Index Terms—Parallel, GPU, Simulation, LBM, Boltzmann,
Refinement

I. INTRODUCTION

Complex fluid flows are prevalent in engineering systems
and natural environments, and hence simulating their behavior
is of paramount importance in many disciplines ranging from
vehicle aerodynamics and building ventilation to weather
forecasting and planetary currents. Often in common between
all these various applications is the substantially wide range
of spatial scales that need to be resolved numerically in
order to capture the realistic fluid flow dynamics accurately.
For example, considering the simulation of air flow around
buildings, one needs to enclose the open environment using
a computational box that is sufficiently large to eliminate the
effects of the boundary conditions while resolving small geo-
metric features of interest in the building (e.g., balconies and
windows) notwithstanding the microscale turbulent features of
the flow that are even orders of magnitude smaller.

Given this multiscale nature of such fluid-related phenom-
ena, the field of computational fluid dynamics has evolved
to enable accurate, efficient, and fast simulations that rely
on nonuniform grids with enhanced refinements around the
regions of interest [1]. Over the past two decades, the Lattice
Boltzmann Method (LBM) has gained tremendous popularity
as an alternative mesoscopic representation of fluid flows
which have been classically formulated using a macroscopic
representation based on the Navier-Stokes (N-S) equations
and solved numerically using various methods such as finite-

Fig. 1: Our optimized LBM grid refinement facilitates large-
scale fluid simulations, e.g., airflow over an airplane within a
virtual wind tunnel of size 1596×840×840 on a single GPU.

difference, finite-volume or finite element. While LBM is
proven to be equivalent to the weakly compressible N-S
equations up to second-order accuracy in space and time
(e.g., through the Chapman-Enskong analysis [2]), its localized
formulations make it ideally suited for massive paralleliza-
tion, especially on GPUs. The massively parallel nature of
LBM computation has made it an appealing CFD solution
for commercial purposes, e.g., XFlow, PowerFLOW [3], and
ultraFluidX [4].

Optimizing the GPU implementation of LBM has therefore
gained much attention in recent years leading to the devel-
opment of just-in-time compiler-based implementations [6]
as well as advanced algorithms on uniform grid such as
the AA-method [7], Esoteric Twist [8], and reduced/mixed
precision [9]. The goal of all these optimizations is to reduce
the memory requirements of LBM and ultimately improve the
wall-clock performance of the simulation [10].

As discussed earlier, large-scale CFD simulations are only
possible by relying on nonuniform grid refinement. The
memory-bounded computations associated with LBM further
necessitate the need for efficient implementations of this
approach on the GPU. However, a robust grid refinement
algorithm in LBM involves multiple kernels and complex
data dependencies and synchronizations (Figure 2, top) which
makes caching obsolete and may result in poor performance
without careful hardware-specific optimizations. Various prior
investigations have focused on implementing the grid re-
finement technique in LBM either on single-GPU or multi-
GPU architecture. An implementation of the grid refinement
technique in LBM on both CPU and a single GPU was
presented for 2D domains in [11] which was then extended to
heterogeneous CPU-GPU machines in [12]. Other works [13],
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Fig. 2: Data dependency graph of the baseline grid refinement LBM algorithm [5] ported to the GPU (top) and our optimized
implementation (bottom). The baseline has complex dependencies because of multiple kernels required for different levels.
Each node in this graph represents a GPU kernel where C is Collision, E is Explosion, S is Streaming, O is Coalescence and
A is Accumulate as will be explained further in Section IV. The number represents the grid level where the coarsest level is
0. Our implementation is simpler because of our aggressive kernel fusion (around three times fewer kernels) which makes our
algorithm 1.3–2X faster than the baseline algorithm.

[14] focused on scalability on multi-GPU systems, adaptive
mesh refinement on multiple GPUs [15] and load-balancing in
distributed CPU-based systems [16], [17]. While these related
works also aimed to develop grid refinement for LBM on
GPU, to our knowledge, there is no prior work that focuses
primarily on optimizing the single GPU implementation of
grid refinement in LBM. We believe this is a crucial precursory
investigation before further optimizations are undertaken for
multi-GPU systems.

In this paper, we propose an optimized implementation
of the LBM grid refinement method that utilizes the GPU
hardware efficiently. Our optimized implementation is based
on aggressive kernel fusion (Figure 2, bottom) leading to
improved memory accesses, reduced synchronization, reduced
kernel launch overhead, and simpler code. Additionally, our
implementation uses less memory than the baseline algorithm
by reducing the size of the ghost layer. We show the ef-
fectiveness of our optimized implementation and compare it
against CPU and GPU implementations where we achieve an
order of magnitude speedup. While there exist many open-
source LBM codes, ours is the first to implement the grid
refinement method on the GPU. Our code is available at
https://github.com/Autodesk/Neon.

II. MATHEMATICAL BACKGROUND

The LBM equations determine the time-evolution of a
collection of fictitious particles, represented by time-dependent
velocity distribution functions (fi) along a set of discrete lattice
directions denoted by ei = (e1, . . . , eq). In this work, we
employ 3D lattice structures with 19 (D3Q19) or 27 (D3Q27)
directions. The values of fi are evolved in time through
a collide-and-stream algorithm. If we denote the nonlinear
and computationally local collision operation by C, we may
represent the collide-and-stream algorithm as,

Collision: f∗
i (x, t) = C(fi(x, t)) (1)

Streaming:fi(x+ ei∆x, t+∆t) = f∗
i (x, t) (2)

Throughout this paper, we use two collision operators, namely
(i) the single-relaxation collision model of Bhatnagar-Gross-
Krook (BGK) [2], and (ii) the multi-relaxation entropic model

of Karlin-Bösch-Chikatamarla (KBC) [18]. Without loss of
generality and for conciseness, we only present the simple
BGK model here in which C is defined as,

f∗
i (x, t) = fi(x, t)−

∆t

τ
{fi(x, t)− feq

i (x, t)} (3)

In the above equations ∆t is the time step and τ is a
relaxation time, determined by the total kinematic viscosity
ν of the fluid as,

τ =
ν

c2s
+

∆t

2
. (4)

or in other words, ν = c2s(τ −∆t/2).
In Equation (1), feq

i represents the components of the
equilibrium distribution function and is defined as,

feq
i (x, t) =

wiρ(x, t)

{
1 +

ei · u(x, t)
c2s

+
(ei · u(x, t))2

2c4s
− ∥u(x, t)∥2

2c2s

}
(5)

where wi are weights associated with each lattice direction ei.
The fluid density ρ(x, t), velocity u(x, t) and pressure p(x, t)
are formally derived from fi as,

density: ρ(x, t) =
∑
i

fi(x, t) (6)

velocity: u(x, t) =
1

ρ(x, t)

∑
i

eifi(x, t) (7)

pressure: p(x, t) = c2sρ(x, t) (8)

in which cs is the constant speed of sound given by c2s =
(1/3)(∆x/∆t)2.

A. Grid Refinement

Various techniques for grid-refinement in LBM have been
proposed in the literature which may be broadly categorized
into node-based methods [11], [19]–[22] and volume-based
methods [16], [23]–[25]. In the node-based methods, fi is
stored at the cell vertices leading to shared vertices between
coarse and fine cells. In order to impose conservation of mass
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and preserve second-order accuracy, the node-based meth-
ods often resort to scheme-dependent rescaling of fi across
transitions between levels and rely on ad hoc interpolation
and filtering schemes that may lead to spurious results [19].
However, in volume-based techniques, fi values of two sub-
sequent grid levels are not colocated but staggered which
renders the communication between coarse and fine levels
more straightforward. As a result, in volume-based methods a
simple homogeneous redistribution of fi acts as the required
interpolation scheme for coarse-to-fine communications while
conserving mass and momentum [23].

In this paper, we adopt the volume-based method of Rohde
et al. [25] as implemented by Schornbaum et al. [5], [16]. We
introduce some novel changes to this algorithm that are aimed
at optimizing the computational performance of the method
when implemented on the GPU.

We select a refinement ratio of 2 where a coarse cell
at level L is uniformly divided into 2d cells–where d is
the dimension– to arrive at level L + 1, or in other words
∆xL+1 = ∆xL/2. For neighboring cells that interface two
grid levels, a maximum jump in grid level of ∆L = 1 is
allowed. Due to acoustic scaling which requires the speed of
sound cs to remain constant across various grid levels [11],
∆tL ∝ ∆xL and hence ∆tL+1 = ∆tL/2. In addition, the
fluid viscosity ν must also remain constant on each grid level
which implies:

νL = ν0 → c2s(τL − ∆tL
2

) = c2s(τ0 −
∆t0
2

)

or equivalently:

τL
∆tL

= 2L
(

τ0
∆t0

)
+

1

2
(1− 2L)

It is often convenient to define a non-dimensional relaxation
parameter ω = ∆t/τ and hence, ωL on various grid levels are
obtained based on its value at the coarsest level or ω0 as,

ωL =
2ω0

2L+1 + (1− 2L)ω0
(9)

The coarse-to-fine and fine-to-coarse communication steps
across the grids at level L and L+1 (also introduced later in
the paper as the Explosion and Coalescence steps) are defined
as,

Explosion: fi(xβ,L+1, t) = fi(xα,L, t) (10)

Coalescence: fi(xα,L, t) =
1

n

n∑
β=1

fi(xβ,L+1, t) (11)

which correspond to a homogeneous redistribution of fi for
the coarse-to-fine communication (Explosion) and a simple
averaging of fi across n fine cells (denoted by xβ,L+1) that
interface with a coarse cell (denoted by xα,L) for the fine-to-
coarse communication (Coalescence).

In the remainder of this paper, we employ the LBM units in
which it is conventional to non-dimensionalize space and time
by ∆x and ∆t. As a result, in our accompanied open-source
code all the parameters are assumed to be dimensionless, for
instance, ∆x = ∆t = 1 and c2s = 1/3.

(a) Explosion

(b) Coalescence

Fig. 3: Besides collision and streaming, the nonuniform grid
refinement in LBM involves (a) coarse-to-fine explosion, and
(b) fine-to-coarse coalescence. The colored arrows highlight
how a few of the distribution functions fi travel along certain
directions ei.

III. BASELINE GRID REFINEMENT ALGORITHM

Our baseline algorithm is that by Schornbaum et al. [5],
[16], which has been designed for distributed systems. This
algorithm uses a strongly balanced octree grid where, as
indicated earlier, the transition in resolution from one level to
another is strictly 1 in all directions. We denote an octree level
with L, where L = 0 implies the coarsest level of the tree.
The algorithm input is a grid that tiles the simulation domain
at potentially different resolutions. The algorithm depends on
four main computational components (Figure 3)

1) Collision: computes f∗
i using fi as per Equation (1)

similar to the uniform LBM algorithm. This step in-
volves only local computation and does not require
any communications with other cells and hence is not
impacted by grid refinement.

2) Streaming: propagates the information in time and space
by conducting a shift operation as per Equation (2). We
designate the same-level Streaming simply by “Stream-
ing” and denote the cross-level Streaming by Explosion
and Coalescence.

3) Explosion: performs coarse-to-fine communications to
propagate fi from the coarse neighbor into finer cells as
per Equation (10). Explosion is a one-to-many commu-
nication where a coarse cell distributes its values of fi
along ei to fine cells that interface with that coarse cell



along −ei (Figure 3a).
4) Coalescence: performs fine-to-coarse communications

to propagate fi from the fine neighbor into coarse
cells as per Equation (11). Coalescence is a many-to-
one communication where a coarse cell averages the
contributions of fi from its neighboring fine cells along
a certain direction indicated by the ei vector (Figure 3b).

At a high level, the algorithm applies the standard LBM
collide-and-stream algorithm at each level starting from the
coarsest level. However, during the streaming step, the inter-
face between different levels requires special treatment and
this is where the uniform versus nonuniform LBM algorithm
differs. Additionally, for a refinement ratio of two between
levels L and L+1, the algorithm needs to complete two time
steps at level L+1 before proceeding to the next time step of
the coarse level due to the acoustic scaling (see Section II).
In other words, given a grid with L levels, the finest grid will
perform 2L−1 time steps to complete one time step on the
coarsest level.

In order to facilitate the communication between different
levels of the grid, the interface between a grid at level L and
a finer neighbor at level L + 1 is extended by a ghost layer
(Figure 4a) which lives in the finer L+1 grid and covers two
coarser layers from the grid at level L. These ghost layers
are used for communicating interface information both ways,
i.e., from coarse to fine and from fine to coarse. We note that
all reads/writes could be done as a gather or scatter operation
without the need for any atomic mechanism thanks to these
added ghost layers.

The baseline method in Algorithm 1 shows a single time
step of the coarsest level. This step is repeated in a loop until
a user-specified stopping criterion is met, e.g., based on the
maximum number of iterations. To succinctly describe one
time step of the baseline method in Algorithm 1, we assume
a two-level grid: L (coarse) and L + 1 (fine). Starting from
the post-streaming state, the algorithm performs a Collision
step on L and L+1. Then, an Explosion operation populates
ghost layers of L + 1 by copying two layers of L along the
interface between L and L+1. This is followed by a Streaming
operation in L and L+1 including the innermost layer of the
ghost cells. Then, another Collision and Streaming steps are
performed on L+1. Finally, a Coalescence step is performed
where the innermost ghost layer populations in L + 1 are
averaged and copied to the overlapping corresponding coarse
cells in L.

IV. ANALYSIS AND OPTIMIZATION

While the majority of previous work focused on distributed
systems, here we analyze the performance of the baseline
algorithm (Section III) on a single GPU and investigate its
potential bottlenecks to pave the way for its optimization.
The main drawback of implementing the baseline algorithm
in its original form on the GPU is that every operation is
performed in isolation—missing the opportunity for kernel
fusion. This leads to loading the whole grid multiple times to
operate only on a small subset of it, e.g., during Explosion

Algorithm 1: Baseline Grid Refinement LBM Algo-
rithm [5]

1 Function NonUniformTimeStep(L):
2 Collision(L)
3 if L ̸= Lmax − 1 then
4 NonUniformTimeStep(L+ 1)
5 end
6 if L ̸= 0 then
7 Explosion(L,L− 1)
8 end
9 Streaming(L)

10 if L ̸= Lmax − 1 then
11 Coalescence(L,L+ 1)
12 end
13 if L == 0 then
14 return
15 end
16 Collision(L)
17 if L ̸= Lmax − 1 then
18 NonUniformTimeStep(L+ 1)
19 end
20 if L ̸= 0 then
21 Explosion(L,L− 1)
22 end
23 Streaming(L)
24 if L ̸= Lmax − 1 then
25 Coalescence(L,L+ 1)
26 end

and Coalescence. Here, we demonstrate how the baseline
algorithm can be modified to enable kernel fusion, which is
otherwise non-trivial. We will show that Streaming, Explosion,
and Coalescence may all be combined into a single kernel.

A. Reducing Ghost Layers

The baseline algorithm uses four ghost layers on the fine
grid which overlap two coarse layers. These ghost layers
are employed to duplicate the overlapping coarse layers in
order to be leveraged (only the two innermost layers) during
the Streaming step of the fine level. The fine ghost layers
also allow the Coalescence step to be performed as gather
operations (initiated by the coarse layer) avoiding atomic
operations. However, this approach is only reasonable if the
distance in memory between the fine and coarse grid is large.
On a single GPU, four ghost layers are excessive and may limit
the maximum size of the problem that fits in a single GPU.
Additionally, depending on the data structure (see Section V),
the distance between grids at different resolutions may not be
large enough to warrant manual caching.

Instead of allocating the ghost layer on the fine level, we
allocate only a single layer on the coarse layer effectively
reducing its size to 1/3 of what is needed by the baseline
algorithm. In this case, during the Explosion step (i.e., coarse-



(a) Baseline Algorithm (b) Reduced ghost layer

(c) Fused CA (d) Fused CA and SE

(e) Fused CA, SE, and SO (f) Fused CASE and SO

Fig. 4: Comparing the baseline algorithm against different optimization opportunities using a two-level grid. While the baseline
algorithm (top left) uses a larger ghost layer (dotted cells), the ghost layer in our implementation (top right) is allocated on
the coarse level effectively reducing its size to 1/3. Additional optimizations include fusing Collision (C) and Accumulate (A)
steps by performing the Accumulate step as atomic write (middle left). We could also fuse Streaming (S) and Explosion (E)
(middle right) as well as Streaming and Coalescence (O) steps (bottom left). Finally, we could fuse all steps of a single time
step of the finest resolution (bottom right).



to-fine communication), the fine grid reads directly from the
coarse grid.

We rely on this single ghost layer on the coarse grid to
prepare the information needed by the interface cells of the
coarse level. This approach turns the Coalescence step into
a simple Streaming-like step (Figure 4b). As a result, the
Coalescence step is split into two operations: (i) an Accumulate
step on the ghost layer after every fine-level Collision step,
and (ii) a Coalescence step by the coarse level to read and
average the accumulated information. The Accumulate step
is the same as the coarse-level accumulation in the baseline
algorithm (Equation 11) but without division. The division (to
average the data) is done now during the Coalescence on the
coarse level. The Accumulate step could be performed either
as a gather read operation from the ghost layer or scatter
atomic write operation from the fine level. Here, we note that
the contention is not too high as every ghost cell will be written
by a maximum of 8 other fine cells. After two Accumulate
steps, the information is ready for the coarse layer to do its
Coalescence step.

B. Kernel Fusion

The modifications explained thus far open the door for a
variety of options for kernel fusion. For example, the Collision
and Accumulate steps could be fused in a single kernel
(Figure 4c). In this kernel, every cell performs its Collision
operations, and if it is on the interface with a coarse cell, it will
simply Accumulate its populations which are now stored in
registers. When the coarse cell performs its Coalescence step,
it will reset the ghost layer allowing subsequent Accumulate
steps to be done correctly. Note that if the Accumulate step
is done as a gather operation by the coarse cell, the data
dependency would not allow kernel fusion since the coarse
level should wait for the fine level to finish its Collision step
before performing the Accumulate step.

Additionally, the Explosion and Streaming steps (Fig-
ure 4d), and Coalescence and Streaming steps (Figure 4e)
could be fused since the Explosion and Coalescence are now
simply a sub-step of the Streaming step where the missing
populations live on a grid at a different resolution. When
there are more than two levels, the middle level can fuse
the Streaming, Explosion, and Coalescence steps all in one
kernel. Finally, and similar to uniform LBM [10], the Collision
and Streaming can be fused in one kernel (Figure 4f) for the
finest resolution. Since the majority of the computation is done
on the finest level, this fusion is expected to be extremely
beneficial. Unlike the uniform LBM, this final kernel fusion
also requires the Collision and Streaming steps to perform the
Accumulate and Explosion steps respectively.

V. IMPLEMENTATION DETAILS

The grid refinement LBM algorithm is based on a typical
octree-based spatial organization—since the branching factor
from one level to another is two. The algorithm defines two
distinct sets of operations: single-level operations that work
at one level (e.g., Collision and Streaming) and multi-level

Fig. 5: A simplified example of our block-based memory
layout for vector field data where each 2× 2 block coincides
with a 2× 2 CUDA block

operations that exchange information between two grids at
different levels (e.g., Coalescence and Explosion). There are
two main approaches for designing an LBM data structure [5]:
a forest of octrees or a stack of uniform sparse grids. Each
can support LBM single-level operations, with some glue to
transition between different levels aimed at supporting multi-
level operations. However, since the majority of the work
occurs on the finest level, a stack of uniform sparse grids is
expected to have superior performance compared to an octree
structure. This is because most of the operations involved are
stencil operations which may be handled better by a uniform
grid rather than a tree traversal. Thus, we choose the sparse
grid as the basis for our data structure.

A. Block Sparse Data Structure

We partition the input domain into 3D blocks of fixed size.
We place the blocks in active regions of the space associated
with the fluid domain. For each block, we allocate a bitmask
to track the active cells within the block. Additionally, we
store the indices of all the neighboring blocks in all lattice
directions (e.g., 26 directions for D3Q27) to be used for
stencil operations. Given a cell, we can identify its intra-
block and inter-block neighbor cells via division and modulo
operations either using inexpensive bit operations (for intra-
block neighbors) or explicitly (for inter-block neighbors). The
block size B3 is known at compile time which allows for
various optimizations. To maximize locality, at runtime, a
block is assigned to one CUDA block and every CUDA thread
is assigned to a cell within the given block.

To represent vector fields over a grid, e.g., the 19-component
vector field for D3Q19 populations, we adopt an Array of
Structures of Arrays (AoSoA) (Figure 5) layout i.e., we store
block’s field data in a contiguous memory region, where data is
then grouped by field’s component. The memory layout and
the mapping to CUDA blocks guarantee coalesced accesses
and maximize memory locality within a block. Then, to
improve the data locality between blocks, we arrange blocks
in memory using space-filling curves (Sweep, Morton, or
Hilbert).

B. Grid Refinement Data Structure

We implement our grid refinement data structure by stacking
Lmax block sparse data structures. We then extend the block
data structure with information to allow access to neighbor



(a) Nonuniform Grid (b) Iteration 1000 (c) Iteration 5000 (d) Iteration 10000

Fig. 6: Snapshots of the lid-driven cavity flow at Re = 100 based on our nonuniform LBM implementation using the BGK
collision model and D3Q19 lattice. The flow is incompressible, steady, and laminar characterized by a Reynolds number of
Re = ulid/ν = 100 where ν is the kinematic viscosity of the fluid and the cubic box is assumed to have a dimensionless size
of 1 in all directions. For this example, 3 levels of refinement with 240 voxels on the finest level (across all sides of the box)
were used.

interface cells at a different resolution. For a grid at level L,
we store the block index of an overlapping ghost block at
level L− 1. We also store the block index containing the fine
cells only for the ghost cells on a non-leaf level. Octree-based
organization of the baseline and optimized algorithm defines
a 3D blocking of 23 because of its branching factor. Directly
using such an organization for the memory may negatively
impact the performance since 23 memory blocks provide low
locality for stencil operations, and 23 CUDA blocks do not
declare enough threads to fill up an entire CUDA warp. Thus,
we decouple the branching factor from the memory layout.
We do this by grouping a set of 23 sub-blocks into B3-sized
memory blocks as shown in Figure 5.

C. Programming Model

We implement our data structure in Neon [26]. Neon is a
multi-GPU programming model that transforms a sequential
user code into a multi-GPU efficient parallel implementation.
We use Neon’s capability of extracting the data dependency
graph by analyzing the input and output fields of each kernel.
This allows us to run independent kernels concurrently and
to place synchronization points only when necessary leading
to maximizing concurrency. For composing kernels, Neon
exposes a for-each abstraction to define computations that
manipulate fields’ data. In Neon, the user only writes what
happens to a single cell then Neon automatically launches and
assigns CUDA blocks and threads to all cells.

Neon was originally designed for uniform grid computations
with built-in dense, element sparse, and block sparse data
structures. We extend Neon’s capability to automatically con-
struct a data dependency graph of multi-resolution applications
thanks to a stack of uniform sparse grids. For multi-level
kernels, the application defines at what level the kernel should
run. Then, Neon launches the kernel on the specified grid level
while relying on its capabilities for resolving data dependen-
cies and assigning CUDA blocks and threads to active grid
cells.

VI. RESULTS

We now show the effectiveness of our optimization on
a set of use cases. We analyze both the correctness and
performance of our implementation. The LBM community
relies on MLUPS (Million Lattice Updates Per Second) as the
primary metric for performance. For a uniform grid, MLUPS
is simply defined as V N/T where V is the number of voxels
and T is the wall-clock time in microseconds to complete N
LBM iterations. For nonuniform LBM, we calculate MLUPS
as

∑Lmax−1
L=0 VLNL/TL, where Lmax is the number of levels

of the multi-resolution grid, VL is the number of active voxels
at level L (excluding any ghost cells), and TL is the wall-clock
time in microseconds to complete NL iterations on level L i.e.,
NL = 2LN . We conduct all experiments on an A100 GPU
with 40 GB of memory inside an NVIDIA DGX machine.
Our implementation and comparisons use double precision
unless stated otherwise. All tests are run in an NVIDIA docker
container with CUDA 11.2.

We use the KBC model—compatible only with D3Q27
lattice—(Section II) in the experiments with turbulent flow
simulation (e.g., wind tunnel). For the laminar (e.g., lid-driven
cavity), we use the BGK model which can be employed with
either D3Q19 or D3Q27. Since the results are identical, we
reported those based on D3Q19.

A. Lid-driven Cavity

Validation: A canonical benchmark problem in CFD is
the flow inside a lid-driven cavity. In this problem, fluid inside
a cubic box is driven by the tangential movement of the box
lid. The no-slip boundary condition on all the walls as well
as the moving wall boundary condition on the top lid are all
imposed by the halfway bounce-back method [27]. In order
to capture the boundary layer near the walls accurately, we
successively refine the voxels in all directions as they get
closer to the boundaries. Figure 6 shows different iterations
of our simulation based on a 3-level nonuniform grid. We
validated our simulation against the accepted reference results
of Ghia et al. [28] where we sampled the domain along x and y



Fig. 7: Validating our nonuniform LBM implementation
against reference results of Ghia et al. [28]. The normalized
velocity components in x and y directions, namely u/ulid and
v/ulid (where u⃗ = (u, v, w) and u⃗lid = (ulid, 0, 0)) are probed
along the y and x axes respectively. The indicated distance is
measured with respect to the coordinate axis located at the
box center.

axes that run through the center of the domain. Figure 7 shows
that our results are well-aligned with the reference data.

Comparison: As mentioned in Section I, there are no
open-source and optimized GPU implementations of the grid
refinement method in LBM. As such, our choice for compari-
son was limited to Palabos [29] and waLBerla [30]. Palabos is
a multi-core CPU implementation of LBM targeting applica-
tions with complex coupled physics. We used their nonuniform
LBM implementation to compare the same lid-driven cavity
example against our implementation. Given the same domain
size and refinement levels, Palabos took 2.3 seconds while
our implementation took 0.015 seconds per iteration which
is more than two orders of magnitude faster. Of course,
a big factor of this speedup is due to differences between
CPU and GPU hardware architectures where LBM is more
amenable to massively parallel architectures like the GPU. For
that, we compared also against waLBerla; an LBM block-
structured implementation that relies on meta-programming
techniques to generate highly efficient code for CPUs and
GPUs. Again using the lid-driven cavity example, waLBerla
performs O(10) MLUPS while our implementation is more
than 2250 MLUPS i.e., more than two orders of magnitude
speedup. We acknowledge that waLBerla’s developers have
only recently ported their grid refinement algorithm to GPU,
and therefore it is not well-optimized. However, this highlights
the importance of our careful optimizations and illustrates that
merely porting CPU code to GPU is not enough to utilize the
GPU hardware efficiently.

The comparison between grid refinement and uniform reso-
lution may not be straightforward as the refinement of the grid
is problem-dependent. For the lid-driven cavity and the level
of refinement we selected, the time to solution for both well-
optimized uniform [26] and grid refinement LBM is almost
the same—grid refinement is only faster by 1.18X.

B. Wind Tunnel

In order to showcase the benefits of employing nonuniform
grid refinement in LBM and to further demonstrate our ef-
ficient implementation of this technique on a single GPU,
we constructed a virtual wind tunnel experiment with two
configurations.

Flow over sphere: We place a sphere inside a virtual
wind tunnel with three levels of refinement around the sphere
(Figure 8 and Table I) where the no-slip boundary condition
is again imposed on the side walls and on the sphere using
the halfway bounce-back method [27]. The inlet velocity
associated with the incoming flow inside the wind tunnel
is also prescribed using the same bounce-back technique.
For the outflow boundary condition where the flow exits the
domain, the missing directions of the distribution function fi
at the boundary are simply assigned the corresponding lattice
weights wi.

Table I shows the performance of both the baseline and
our most optimized implementation. The baseline here cor-
responds to the algorithm in Figure 4b which has two of
our own improvements compared to the original algorithm
proposed in [16]. More precisely, in the modified baseline
here (i) the ghost layer is allocated on the coarse level and
(ii) the Accumulate communication is initiated from the coarse
level. Table I clearly demonstrates the speedups gained through
our optimizations. We note that as the computational domain
becomes larger, the speedup decreases because a larger frac-
tion of time is spent on the domain interior (e.g., to perform
Collision) and less time is spent on the interface between levels
(e.g., to perform Coalescence) and hence the overall impact
of the computational operations that were targeted by our
optimized implementation become relatively less pronounced.
Nevertheless, our optimized implementation is able to sustain
significantly better performance with up to 30% speedup.

In addition, we carry out an ablation study to show the
impact of different fusion options shown schematically in
Figure 4. Figure 9 shows that the fusion of Collide and
Streaming operation associated with the finest resolution has
the largest contribution to the speedup. This is because the
voxels at the finest resolution consume more than half of
the number of active voxels (Table I). We emphasize that
such fusion is only possible thanks to the introduction of the
Accumulate step which breaks the data dependency allowing
the finest level to fuse the Collision and Streaming steps into
one.

Flow over airplane: In this scenario, we demonstrate the
impressive capabilities offered by our efficient implementa-
tions of the grid refinement LBM running on a single GPU. We
simulate a virtual domain with dimensions of 1596×840×840



(a) Nonuniform Grid (b) Iteration 5k (c) Iteration 10k (d) Iteration 30k

Fig. 8: Evolution of flow over a sphere with radius R at Re = uinletR/ν = 4000 using the KBC collision model and D3Q27
lattice.

Size Distribution (×106) Baseline (MLUPS) Ours (MLUPS) Speedup

272× 192× 272 0.602, 0.296, 0.175 482.63 1081.67 2.20
544× 384× 544 4.81, 2.37, 1.40 1115.80 1646.37 1.40
816× 576× 816 16.25, 8.0, 4.74 1299.7 1805.03 1.30

TABLE I: Comparing the performance of the modified baseline algorithm (Figure 4b) to our optimized implementation
(Figure 4f) using the example of flow over sphere where three levels of refinement were used to arrive at the finest level
around the sphere. Size indicates the length of the virtual wind tunnel box described in the finest level along x, y, and z
directions; Distribution indicates the distribution of active voxels across different levels starting from the finest level, Baseline
refers to the MLUPS achieved by our implementation of the modified baseline algorithm; Ours refers to our most optimized/fused
implementation; and Speedup = Ours/Baseline.
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Fig. 9: The impact of different fusion configurations on the
achieved MLUPS for the flow over sphere problem.

and place an aircraft model into this domain. We maintain
consistent boundary conditions and employ the same collision
model as in our previous case. In Figure 1, we depict the
intricate turbulent flow patterns around the aircraft.

It is worth noting that with a uniform grid approach,
the specified domain size of 1596 × 840 × 840 would be
unattainable due to limitations in accommodating such large
grids within a single GPU. Even with advanced optimizations
for uniform grids, such as the AA-method [7] that employs a
single buffer, the largest feasible domain size on a single 40
GB GPU would be restricted to approximately 794×794×794.
This emphasizes the exceptional capabilities enabled by our
grid refinement implementation that would otherwise be un-

achievable

VII. CONCLUSION AND FUTURE WORK

Large-scale and accurate simulation of realistic turbulent
flows is essential for many applications. In this work, we
investigated the nonuniform grid refinement algorithm in the
Lattice Boltzmann Method (LBM) and optimized its perfor-
mance on a single GPU. The algorithm which was inherited
from a CPU-focused implementation introduces complex data
dependencies leading to inefficient implementation if ported
to the GPU in its original form. We analyzed and optimized
this complex data dependency. Our proposed algorithm, which
highly leverages kernel fusion optimization and GPU atomic
operations, features a lower memory footprint and reaches
higher performance. Efficient nonuniform grid refinement on
the GPU enables us to run large-scale problems on a single
40 GB GPU. Such large spatial scales open new avenues for
tackling realistic engineering problems that were previously
either impossible or only feasible on multi-GPU systems.

The foundation laid by our optimized single GPU algorithm
positions us favorably for future research in extending this
approach to multi-GPU frameworks, offering even higher
scalability options for both speed and memory requirements.
Additionally, we foresee promising research opportunities in
Adaptive Mesh Refinement (AMR) for LBM, enabling dy-
namic grid resolution adjustments during runtime, and enhanc-
ing the flexibility of our simulations.
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