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Abstract  
 
As aerospace and automotive industries increasingly adopt advanced materials 
and manufacturing methods, traditional certification processes, which rely on 
safety factors, historical data, and physical testing, struggle to address the 
complex failure modes of new materials like custom composites and additively 
manufactured structures. Digital twins—virtual replicas of physical systems—
can enhance certification workflows by enabling continuous monitoring and 
providing real-time insights into system performance through the integration of 
sensor data with physics-based models. This approach has the potential to 
improve failure predictions, optimize performance, and reduce over-
engineering, supporting more efficient and lightweight designs. This study 
presents the development and validation of a digital twin for a sensorized 
Unmanned Aerial Vehicle (UAV), focusing initially on a propeller boom arm 
mounted on a test rig for real-world testing in a controlled environment. The 
digital twin leverages both physics-based analysis provided by surrogate 
models of Autodesk Nastran and real-world sensor data. We perform a three-
way comparison between Nastran, the digital twin, and sensor data to validate 
both the hardware and software setups, with ongoing efforts to reduce 
discrepancies and improve sensor placements. Our initial results highlight the 
potential of digital twins to significantly accelerate certification processes, 
reduce costs, and enable the faster adoption of new materials, ultimately 
driving innovation and transforming engineering practices across industries.  



1. Background  
 
In the rapidly evolving landscape of engineering certification, traditional 
methodologies are becoming increasingly inadequate as industries advance 
towards more innovative and high-performance designs. Existing certification 
workflows in fields such as automotive and aerospace rely heavily on factors-
of-safety estimations and practices derived from historical data and physical 
testing, which can be costly and time-consuming [1]. Derivative methods, 
outlined in standards like NASA-STD-5001B [2], depend on archives of legacy 
data, which may not adequately address novel materials and designs emerging 
from advancements in structures and manufacturing techniques. Moreover, 
while test-based certification in standards like ASTM D3039/D3039M-17 [3] 
provide more accurate predictions of material behaviour through prototype 
testing, it is limited under specific environmental conditions and becomes 
inadequate for complex system interactions and greater variability in operating 
environments [4]. These methods prescribe conservative approaches–including 
factors of safety and prototype testing–often resulting in unnecessarily heavy 
structures that do not optimize performance or guarantee safety [4].  

As engineers and designers explore innovative structures, materials, and 
manufacturing processes, current certification methods struggle to keep pace. 
This is particularly challenging when it comes to composites and additive-
manufactured materials, as opposed to conventional materials like metals, 
where the behaviours are simpler, and engineers have decades of design 
experience. In contrast, newer materials which are gaining traction in 
lightweight applications due to their potential for enhanced performance, such 
as custom composite layups and lattice structures used in additive 
manufacturing, introduce complexities in predicting mechanical responses due 
to their unique geometries, anisotropic properties, and manufacturing process 
dependence [5, 6]. The speed at which new materials are being developed 
means there is limited historical data to guide safety assessments, making it 
difficult to accurately predict how these materials perform and age in real-
world conditions. This lack of experience and understanding not only impedes 
the timely adoption of these innovative technologies but also creates 
inefficiencies in both design and certification workflows. Existing practices, 
which rely on conservative worst-case scenarios, fail to account for the 
nuanced failure modes of these materials, further hindering engineers from 
developing time-efficient, cost-effective, and certification-ready systems. 

A promising solution to these challenges is the use of digital twins, which can 
transform how aerospace and automotive structures are designed, tested, and 
certified. By embedding sensors into designs during their operational phase, 
digital twins—virtual replicas of physical systems—can provide insights on 



structural performance. In situ data collected through embedded sensors allows 
designers to better understand the performance of materials and structures 
throughout the product lifecycle, from initial design to end-of-life. This 
approach is particularly advantageous for advanced composite materials, where 
damage mechanisms are complex and less deterministic compared to 
traditional metals [7]. 

Digital twin approaches that leverage physics models [12, 13, 14] can further 
enable inference of quantities not directly measured by sensors, such as the 
stress and strain over the entire structure including locations not instrumented 
with sensors, or the unknown operating load conditions causing the structural 
response captured by the sensors. A digital twin, especially one that is capable 
of operating in real time, provides critical insight into how materials and 
structures behave under various loading conditions. It can enable advanced 
monitoring and diagnostics of the structure’s health as it ages, anomaly and 
failure detection, as well as fatigue analyses based on the actual stress cycles of 
the structure. Moreover, operational insights gathered by digital twins, such as 
stress concentrations that may indicate potential failure points, provide 
valuable information to optimize future designs by reinforcing weak areas and 
reducing overengineered components, ultimately leading to lighter and more 
efficient structures. These capabilities allow a structure to operate safely during 
service without relying on limited experimental data and design knowledge, 
which can be particularly advantageous for anisotropic materials and parts with 
complex geometries whose behaviors are less well understood, and which 
traditional analyses struggle to model accurately. Modeling errors or model-
form uncertainties in the digital twin due to simplifying assumptions in the 
physics simulation and uncertain aging effects can also be corrected based on 
sensor data using modal identification [15] and probabilistic model updating 
techniques [14, 16].  

Despite the potential for digital twins to make the certification process more 
efficient, accurate, and adaptive to new materials and technologies, more 
research is required to make such digital twins a reality. Recent publications 
[12, 13, 17] have demonstrated the success of full-state inference from noisy 
and sparse sensor data. However, accurate and efficient inference of unknown 
operating conditions remains a challenge, especially without judicious prior 
model selection and tunning which is highly problem dependent. In addition, 
[14] proposed and demonstrated the viability of updating the digital twin model 
directly from in-situ data, even when the loading condition is unknown, but 
effectiveness of the approach remains to be proven in the presence of stronger 
model-form uncertainties when simulating structures made with advanced 
technologies. Moreover, a new digital-twin-enabled certification workflow 
must combine and streamline multiple algorithmic components. These include, 
for example, offline model preparation, training, and sensor placement, online 
inference and model updating, anomaly detection and fatigue analysis based on 



the output of the digital twin, and an intelligent system which can inform future 
design of certification-ready structures; each of which requires different 
degrees of research and development to be ready for real-world engineering 
applications. 

To move toward this goal, we have developed a research platform based on a 
multi-rotor Unmanned Aerial Vehicle (UAV). We start with a simple problem: 
a load-bearing propeller boom arm of the UAV, on which we set up a test rig to 
perform in-lab testing that mimic real-world mounting and load conditions. 
Our goal is to set up the sensor data gathering hardware and an initial digital 
twin software prototype based on existing approaches from literature. We aim 
to perform initial experiments and, more importantly, validation of the 
hardware and software to ensure reliable results. Thus, we begin by integrating 
sensors into an aluminum version of the boom arm in this paper and 
presentation, which will serve as a starting point for future work involving a 
composite boom and an additively manufactured UAV node connecting the 
arm to the rest of the UAV body. In parallel, we increase the complexity of the 
problem incrementally by focusing on relatively simple static and dynamic 
analyses on the test rig in this work before moving on to more complex 
behaviors of the arm and node during flight. We then incorporate failure 
analyses, such as fatigue prediction, in the future. This process will help us 
gain insights and scientific innovation to eventually transform the certification 
process. 

This paper is more specifically organized as follows. Section 2 describes our 
UAV research platform, the test rig setup, and the hardware used for static and 
dynamic load experiments and localized strain data gathering. Section 3 
presents our steps to create and validate the initial digital twin including: 
construction of a Nastran surrogate model for the boom arm, development of a 
digital twin algorithm which uses the surrogate model to translate localized 
strain data into a full distribution of the stress within the structure, and finally 
the experimental testing procedures to validate the sensor data as well as digital 
twin output. Section 4 presents some preliminary results towards verifying and 
validating the surrogate model, the digital twin algorithm, and the data 
gathering hardware. 
 
2. Problem Description and Set Up 
 
2.1 UAV Set Up 
The UAV research platform designed and developed by the Autodesk Research 
team has a maximum take-off weight (MTOW) of 55pounds, or approximately 
25 kg (Fig. 1). The UAV is a sensorized flying platform that functions as a 
testbed for our advanced CAD software development and novel scientific 
algorithms. It features four propeller arms, four landing gear legs, and a central 
body housing the battery, electrical components, and a front-mounted camera 



inspection system. Its major dimensions are approximately 1.14 m in length, 
1.14 m in width, and 0.66 m in height. We aim to eventually use this UAV to 
evaluate our digital twin algorithms subject to real-world conditions and 
investigate how data and insights gathered using the digital twin can enable 
more performant and certification-ready structural design of the UAV.  
 

 
Figure 1:  CAD image of the Autodesk 55-pound MTOW UAV 

 
2.2 Test Rig Setup 
The test rig, modeled after the 55-pound MTOW UAV, consists of a single UAV 
propeller boom arm, boom socket, propeller motor, and the corresponding motor 
housing and mounts, along with a stationary mount replicating the connection to 
the UAV body (Fig. 2). The boom arm, which connects the propeller motor to 
the UAV socket, is a load-carrying member for which we wish to create an 
experimental digital twin. The motor housing and attachments are additively 
manufactured, and the motors are replaced with precision-machined weights 
matching the motors' mass, allowing for loading and testing without damage to 
electrical components of the actual motor. The work-holding mount of the test 
rig is a precision-machined stand that enables the entire propeller arm system to 
rotate in 22.5-degree intervals, allowing the boom arm to be loaded at various 
angles.  
 

 
Figure 2:  Design of the UAV motor boom test rig 



 
2.3 Data Gathering Setup 

The test rig is loaded statically and dynamically using both the Instron 6800 
series machine and the Universal Robot UR10e collaborative robot. The 
Instron 6800 series is a universal testing system designed for tensile, 
compression, and flexure testing (Fig. 3). It enables precise load application 
with high accuracy, featuring a 5 kHz data acquisition rate and 0.5% accuracy 
down to 1/1000th of the load cell's capacity [8]. Using the Instron, we can 
apply controlled loads to the test rig while monitoring force, displacement, and 
time series data in real time. 

 

Figure 3:  Instron 6800 series universal testing system 

The UR10e collaborative robot, a medium-duty robot with sensorized joints, is 
used for randomized load applications on the test rig (Fig. 4). With a reach of 
1300 mm and a maximum payload of 12.5 kg [9], the UR10e introduces 
dynamic, unknown loads to the system after the digital twin algorithm has been 
verified with the controlled loads applied by the Instron. This allows for testing 
on the algorithm's ability to infer loads under varying unknown load 
conditions, more closely mimicking the unknown load quality in flight. 



 

Figure 4:  UR10e collaborative robot 

The boom arm is instrumented with strain gauges for monitoring the strain 
during testing. Strain data is collected using a Labjack T7 analog extension 
board [10], which interfaces with full bridge strain gauges (N2A-06-S5139U-
350/E4) mounted on the boom arm of the test rig. These strain gauges, with a 
resistance of 350 ohms and a gauge factor of 2.05 [11], are strategically placed 
along the boom arm’s outer surface in alignment with the boom’s direction. 
After calibration, the strain gauges provide localized strain data. The strain is 
calculated using the full bridge strain gauge equation,  

ε = V!"# ∙ 𝑉$% ∙ GF, (1) 

where V!"# is the difference between the stressed and resting voltages (in 
volts), 𝑉$% is the input voltage (in volts), GF is the gauge factor, and ε 
represents the strain. 

By combining the precise control of the Instron system and the dynamic load 
applications from the UR10e, along with the strain measurements using full 
bridge sensors and Labjack T7 signal processing, this setup enables 
comprehensive testing of the digital twin algorithm’s performance under a 
range of load conditions. 

 
3. Digital Twin Development and Validation 
 
Our goal is an initial digital twin of the boom that takes as input sparse strain 
data and outputs a full reconstruction of the stress field within the structure. We 
develop and validate this digital twin via the following three-part process:  
 



Part 1 (Section 3.1) constructs a surrogate model for the finite element 
analysis (FEA) of the boom arm using Autodesk Nastran. The surrogate model 
simulates the arm’s response to the applied load in real-time and provides a 
physics-based relationship between the load and the stress and strain 
throughout the boom, which is needed by the digital twin algorithm.  
 
Part 2 (Section 3.2) develops a digital twin of the boom using the surrogate 
model from Part 1 and strain gauge data gathered from the physical boom. This 
provides real-time insights into the behavior of the boom without assuming 
prior or immediate knowledge of the operating conditions, hence has the 
potential to address some of the certification challenges outlined in Section 1.  
 
Part 3 (Section 3.3) performs a three-way validation between Nastran, the 
digital twin algorithm from Part 2, and the physical data gathered by the 
sensors for a series of experiments using the Instron machine and the UR10e. 
This allows us to establish the quality of the sensor data, and the digital twin 
output comparison will ensure the accuracy of the simulation and the digital 
twin. 
 
3.1 Surrogate Model 
 
In part 1 of this work, we develop a surrogate model for Nastran in Python. 
This step is needed because Nastran, although powerful, is too computationally 
intensive to be used directly in the digital twin for real-time reconstruction of 
the stress field. Therefore, we aim to create a surrogate model of Nastran that is 
significantly smaller in size, allowing for faster, real-time computation, while 
maintaining acceptable accuracy. We create separate surrogate models 
respectively for the static and dynamic simulation of the aluminum boom in 
Nastran. Each surrogate model takes as input an arbitrary static or dynamic 
load applied at the motor’s center of mass, and produces as output the static or 
dynamic displacement, stress, and strain across the entire structure (Fig. 5). 
This surrogate model will serve as a key component in the digital twin 
algorithm described in Section 3.2. 
 

 
Figure 5:  CAD configuration for surrogate model development 



For static load cases, we utilize the principle of superposition, which states that 
the solution to a linear static problem can be found by summing the individual 
contributions of various loads. In the context of our system, the displacement 𝑢 
is the solution the equation,  

𝐾𝑢 = 𝑓, 
 

where K is the stiffness matrix, u is a vector of all unconstrained nodal 
displacements, and f is the vector of external load applied at each node.  

For our application, f represents the resultant nodal force vector generated by 
applying an arbitrary load at the motor’s center of mass. We express this 
arbitrary load a weighted sum of three unit forces and moments in the x, y, and 
z directions, or a sum of six unit loads applied to the motor’s center of mass 
(Fig. 6). 

 

Figure 6:  Six Degrees of Freedom (DOF) indicating direction of all unit loads 

We then have 

𝑓 =/𝛼$𝑓$

&

$'(

, 

 
where 𝑓$ represents the nodal force vector from applying a unit force in one of 
the six directions indexed by i, and 𝛼$ is the load magnitude in the 𝑖-th 
direction. By applying the principle of superposition, the total displacement 𝑢 
can be expressed as: 

𝑢 =/𝛼$𝑢$

&

$'(

, 

 
where 𝑢$ is the displacement response due to each unit force 𝑓$. This allows us 
to compute the displacement for any arbitrary load. 
 



We apply the same principle of superposition to obtain an expression for the 
stress and strain. We denote the stress and strain produced by the unit force 𝑓$ 
as 𝜎$ and ε$ respectively. The stress σ and strain ε at any location in the 
structure due to an arbitrary multidirectional force, f, is then given by 

σ =/𝛼$σ$

&

$'(

, (2)	

ε =/𝛼$ϵ$

&

$'(

. (3)	

To construct the surrogate model, we simulate each of the six unit loads 𝑓$ 
using Nastran. We then extract from the Nastran output files the corresponding 
nodal displacement 𝑢), elemental stress σ), and elemental strain ε) for each unit 
load, and store them as NumPy arrays for efficient computation.  

For linear dynamic load cases, we construct the surrogate model using modal 
analysis. The equation of motion for a specific mode k undergoing vibration 
analysis is defined by: 

 
𝑞*̈(𝑡) + 2𝜁*𝜔*�̇�*(𝑡) + 𝜔*+𝑞*(𝑡) = 𝑉*,𝑓(𝑡) (4) 

 
where 𝑞*(𝑡) is the generalized coordinates for the k-th mode with time 
derivatives �̇�*(𝑡) and �̈�*(𝑡), 𝜁* is the modal damping ratio for the k-th mode, 
𝜔*+ is the squared natural frequency of the k-th mode,	𝑓(𝑡)	is	the	external	
force	vector	applied	to	the	system	at	time	t,	and	𝑉*,𝑓(𝑡)	is	the	projection	of	
the	external	force	𝑓(𝑡)	onto	the	k-th mode shape, representing the effective 
force experienced by the k-th mode. 

To determine the right-hand side of equation (4), we express 𝑓(𝑡) again as a 
weighted sum of six unit loads 𝑓$ with time-dependent magnitudes 𝛼$(𝑡):  

 

𝑓(𝑡) =/𝛼$(𝑡)𝑓$ .
&

$'(

 

 
Substituting the above into the right-hand side of equation (4) leads to 

 



𝑉*,𝑓(𝑡) =/𝛼$(𝑡)𝑉*,𝑓$

&

$'(

, (5) 

	
as the effective external force for the 𝑘-th mode. Given six time-dependent 
load magnitudes 𝛼$(𝑡) for the six unit loads, we evaluate the surrogate model 
by approximating the major modal contributions to the six degrees of freedom 
by solving m modal equations subject to the dynamic load in equation (5). We 
then compute the resulting displacement 𝑢(𝑡), strain ε(𝑡), and stress 𝜎(𝑡) using 
the natural mode shape 𝑉*, strain 𝜖*, and stress 𝜎* associated with each of the 
𝑚 modes as follows: 

𝑢(𝑡) = /𝑞*(𝑡)𝑉* ,
-

*'(

		

ε(𝑡) = /𝑞*(𝑡)𝜖*

-

*'(

,				

𝜎(𝑡) = /𝑞*(𝑡)𝜎* .		
-

*'(

 

We create the surrogate model by extracting the mode shapes and natural 
frequencies from the Nastran simulation results. This involves selecting the m 
most significant modes based on their modal effective mass contributions to 
the system to capture the largest portion of the system's response. Once the 
natural modes are identified, the corresponding stress and strain distribution for 
each mode are also extracted. 

3.2 Digital Twin Algorithm 
 
In part 2 of this work, we develop digital twin algorithms to reconstruct the full 
stress field response within the structure based on strain data gathered by one 
or more sensors on the boom, without assuming knowledge of the load (i.e., the 
𝛼$’s introduced previously). We again consider the static load and dynamic 
load cases separately, making use of the surrogate models described in Section 
3.1. 
 
For static load cases, we solve a linear least squares problem to obtain the 
unknown load magnitudes 𝛼$, 𝑖 = 1,… , 6, based on the strain measurements; 
we then use equation (2) to evaluate the elemental stress 𝜎 resulting from the 
applied load. We simplify the notations herein by introducing a vector  
 

𝛼 = [𝛼(, 𝛼+, 𝛼., 𝛼/, 𝛼0, 𝛼&], , 



 
to describe the unknown applied load. To set up the least squares problem, we 
gather all strain measurements 𝑦1 into a vector 
  

𝑦 = ]𝑦(, 𝑦+, ⋯ , 𝑦%!_
, , 

	
where 𝑛! is the number of sensors on the boom. We also gather the elemental 
strain for all six unit loads into an 𝑛-by-6 matrix,  

	
ℰ = [𝜖(, 𝜖+, 𝜖., 𝜖/, 𝜖0, 𝜖&], 

	
where 𝑛 is the size of each 𝜖$,  𝑖 = 1,⋯ ,6, is the element strain resulting from 
the application of unit load 𝑓$. Since we model the boom arm using shell 
analysis in Nastran, there are 3 stress and strain components per element, so 𝑛 
is 3 times the number of elements. Let 𝜖 be the elemental strain associated with 
the unknown applied load, and 𝐻 ∈ ℝ%!×% be a measurement matrix such that  
 

𝑦 = 𝐻𝜖, 
 

then the least of squares problem we aim to solve can be expressed as 
 

𝛼⋆ = argmin
4

	‖𝑦 − 𝐻ℰ𝛼‖++ , (6) 
 

where 𝛼⋆ is the least-squares estimate of the unknown load magnitude based on 
the strain measurements.  
 
For dynamic load cases, we adopt the approach in [13,17] which is based on 
Kalman filtering and a Gaussian process latent force model for the unknown 
load. We describe the unknown dynamic load via the vector function  
 

𝛼(𝑡) = [𝛼((𝑡), 𝛼+(𝑡),⋯ , 𝛼&(𝑡)], . 
	

We first formulate the equations of motion in (4) and (5) for the 𝑚 modes into 
the following state space model for a first-order dynamical system: 
 

�̇�(𝑡) = 𝐴5𝑥(𝑡) + 𝐵5𝛼(𝑡), (7) 
	

where 𝑥 contains the generalized coordinates 𝑞*(𝑡) from (4) and their 
respective time derivatives �̇�*(𝑡): 
 

𝑥(𝑡) = [𝑞((𝑡), 𝑞+(𝑡),⋯ , 𝑞-(𝑡), �̇�((𝑡), �̇�+(𝑡),⋯ , �̇�-(𝑡)], , 
	

𝐴5 and 𝐵5 are derived by rewriting equation (4) for the 𝑚 modes as a system of 
first-order ordinary differential equations: 



𝐴5 = l

0 𝐼
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⋱
𝜔-+

q − o
2𝜁(𝜔(

⋱
2𝜁-𝜔-
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𝐵5 = l

0

− o
𝑉(,𝑓( ⋯ 𝑉(,𝑓&
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We additionally express the dynamic strain measurements 𝑦(𝑡) in terms of 
𝑥(𝑡) via 
 

𝑦(𝑡) = 𝐺5𝑥(𝑡), 
 
where 

𝐺5 = u[𝐻𝜖(, 𝐻𝜖+, ⋯ , 𝐻𝜖-]
0

v, 
	

and 𝜖*, 𝑘 = 1,⋯ ,𝑚, is the elemental strain associated with the 𝑘-th mode. 
 
If we know 𝑥(𝑡) at time 0 and the load magnitudes in 𝛼(𝑡), we can in theory 
use equation (7) to predict the state of the system at any future time and 
evaluate the stress distribution within the boom. However, this does not in 
practice produce an accurate digital twin of the physical system (the boom arm 
in this case) because equation (7) is not a perfect model, which causes the 
predicted 𝑥(𝑡) to deviate over time from the physical reality, and we often do 
not know 𝛼(𝑡). The approach in [13, 17], which we refer to as KF-GPLFM, 
allows us to obtain a more accurate estimate of 𝑥(𝑡) based on the strain data 
measured by the sensors on the boom. 
 
We omit the full detail of KF-GPLFM since it is well documented in [13, 17], 
but the idea to model the unknown function 𝛼(𝑡) as a Gaussian process 
formulated as a secondary state space model similar to equation (7). We form 
an augmented system describing the time evolution of 𝑥(𝑡) and 𝛼(𝑡) by 
appending the state space model for 𝛼(𝑡) to equation (7). We can then apply 
Kalman filtering to the augmented system to obtain estimates of 𝑥(𝑡1) for 
incremental time values 𝑡1 based on state and input estimates 𝑥(𝑡16() and 
𝛼(𝑡16() from a previous time value 𝑡16( as well as the new sensor 
measurements 𝑦(𝑡1) from the current time 𝑡1. 
 
3.3 Validation Between Physical Data, Nastran, and Digital Twin 

To establish a three-way agreement between physical sensor data, Nastran 
simulation data, and the digital twin, both static and dynamic tests are 



conducted physically and digitally. Both static and dynamic load testing 
involves applying a point load using the Instron machine to the sensorized test 
rig. Force and strain data are collected over time using the Instron machine and 
strain gauges, respectively. This data is then cleaned and compared with the 
Nastran simulation results. To validate the digital twin, we assume no 
knowledge of the unknown load and instead infer it from a subset of the sensor 
measurements gathered from the boom arm. We then compare the inferred load 
and stress distribution against the actual applied load and the strain 
measurements from the remaining sensors (which are not used during 
inference), as well as the Nastran simulation. 

We perform the static tests by applying a point load downward at varying 
forces on the propeller end of the test rig using the Instron. We then rotate 
entire propeller arm system (about the axis aligned with the length of the 
boom) using the work-holding mount of the test rig, and repeat the same 
loading (Fig. 7).  

 

Figure 7:  Instron sensor test rig loading setup 

For each load case and test rig orientation, a corresponding Nastran simulation 
is run. The Nastran model represents the physical setup with the boom socket 
receiver as a solid part, the aluminium boom as a shell idealization using a 
quadrilateral mesh, and the motor as a rigid point mass, including the centre of 
gravity, principal moments of inertia, and weight (Fig. 8). The forces applied 
by the Instron are modelled as remote forces acting on the system at the 
approximated point of contact between the load application machine and the 
motor of the propeller. 



 

Figure 8:  Nastran Test Rig Simulation Setup 

Elemental strain data is extracted from the Nastran model at locations 
corresponding to the physical strain gauges. These Nastran strain values are 
then compared to the physical sensor data to assess agreement. Similarly, 
displacement data collected from the Instron machine is compared with the 
corresponding Nastran displacement data. This comparison establishes a 
baseline, confirming reasonable agreement between the FEA simulations and 
the physical setup. This increases confidence in the accuracy of both the 
simulation and the test rig before progressing to more complex dynamic 
loading tests.  

For dynamic loading, a sinusoidal load is applied downward at varying forces 
on the propeller end of the test rig. As with static testing, the test rig is rotated 
to different angles, and the loading is repeated. To avoid resonance, the load 
frequency is intentionally kept away from the system's natural frequencies. 
This prevents the excitation of overly simple sinusoidal modes, which could be 
too predictable and fail to provide meaningful insights. The same dynamic 
sinusoidal load is then applied to the corresponding Nastran simulation, 
following the same procedure as in static testing. Elemental strain is again 
probed in the Nastran model at locations corresponding to the physical strain 
gauge placements. The same simulation is then repeated using the Nastran 
surrogate model described in Section 3.1. By comparing the data from the 
physical sensors, Nastran simulation, and the surrogate model, we can evaluate 
the error introduced by modal reduction and validate the system’s accuracy. 
This comparison helps us identify and understand any discrepancies between 
the three models. Once agreement is established between the physical data and 
simulation results, we proceed to validate the digital twin algorithm by 
inferring the unknown load and stress distribution based on localized sensor 
measurements.  

Finally, we perform more complex dynamic and torsional load tests using the 
UR10e robot, where the loads will represent unknown external forces acting on 
the system. These tests provide a demonstration of the digital twin algorithm’s 
inference accuracy and its real-time performance. 



4. Preliminary Results 
 
At the time of writing this paper, we have just gathered the first set of Instron 
test data towards the three-way validation between the strain gauge 
measurements, Nastran, and the digital twin algorithm described in Section 3.3. 
This section thus provides some very early results which we intend to improve 
upon. Section 4.1 verifies the correctness of the surrogate models in Section 
3.1. Section 4.2 demonstrates some initial digital twin results based on 
synthetic data as a temporary placeholder until the actual strain data is 
validated and ready to be used as input to the digital twin. Section 4.3 provides 
the initial validation results between Nastran and the Instron test data. We aim 
to provide additional results during the presentation as our work progresses. 
 
4.1 Surrogate Model Verification 

For static loading, we verified the displacement, stress, and strain produced by 
the surrogate model via the principal of superposition by comparing them 
against the output of a Nastran simulation for an arbitrary test load with 
magnitudes 𝛼 = [1, 1, 1, 1, 1, 1],. The relative error in the stress, given by 

relative	stress	error =
w∑ (σ($ − 𝜎+$)+%

$'(

y∑ 𝜎+$+%
$'(

,																								(8) 

where n is the number of elements in the model, σ( is the inferred stress vector 
from the surrogate model, and σ+ is the stress vector from the Nastran 
simulation, is found to be of magnitude approximately 106&. Similarly, the 
relative error in the displacement error, given by 

relative	displacement	error =
w∑ (𝑢($ − 𝑢+$)+%

$'(

y∑ 𝑢+$+%
$'(

,																(9) 

where n is the number of nodes in the model, u( is the inferred displacement 
vector from the surrogate model, and u+ is the actual displacement vector from 
the Nastran simulation, is found to be of magnitude approximately 1067. From 
verifying that the results of equations (8), and (9) are close to zero, the 
surrogate model for static loading is validated to be correct. 

For dynamic loading, we ensured that the natural mode shapes 𝑉* and the 
natural frequencies 𝜔* in equation (4) are parsed correctly from the Nastran 
output. We do so by verifying the following: 



‖𝑉,𝐾𝑉 − diag(Ω)‖
‖Ω‖

≈ 0, (10) 

where 𝑉 is a matrix containing the first 100 modes shapes, i.e., 𝑉*, 𝑘 =
1,⋯ ,100, as columns, 𝐾 is the global stiffness matrix of the system output by 
Nastran, Ω is a vector containing the first 100 eigenvalues, i.e., 𝜔*+ , 𝑘 =
1,⋯ ,100, and diag(Ω) is a diagonal matrix with Ω as the diagonal. We also 
verify the following: 

	‖𝑉,𝑀𝑉 − 𝐼‖ ≈ 0,	 	 	 	 (11) 

where 𝑀 is the global mass matrix output by Nastran and I is the identity 
matrix. Our results confirmed that both (10) and (11) are true to the order of 
1067, verifying that we have the correct modal decomposition for the surrogate 
model for dynamic loading. 

 
4.2 Initial Digital Twin Results 
 
4.2.1 Digital Twin for Static Loads 

As an initial demonstration of the digital twin algorithm for static loads in 
Section 3.1, we generate synthetic strain data based on a Nastran simulation for 
an arbitrary test load with magnitudes 𝛼 = [1, 1, 1, 1, 1, 1],. We then assume 
that the value of 𝛼 is not known and infer it based on a small number of 
synthetic strain measurements using equation (6).  

We experimented with the sensor placement strategy outlined by Manohar et 
al. [18]. The strategy is based on Pivoted QR (PQR) factorization of the matrix 
𝐻ℰ in equation (6), which computes  

(𝐻ℰ)𝑃 = 𝑄𝑅, 

where 𝐻ℰ is a 6 by n matrix, where the 6 rows correspond to the strains in each 
unit load direction, and n is 3 times the number of elements, accounting for 
elemental strains in the x, y, and shear directions. Q is a 6 by n orthogonal 
matrix, where the columns of Q are orthogonal, and R is an upper triangular 
matrix of size n by n. Performing QR pivoting in python gives us the 𝑃 vector, 
an n by 1 permutation vector that represents the reordering of columns 
(pivoting) during the decomposition, giving us the ranking of the optimal 
sensor locations and directions.  

To understand the efficiency of PQR sensor locations (Fig. 9) at making 
inferences on the rest of the system, a consequent number of sensor locations 



are arbitrarily chosen spaced evenly along the boom with varying mounting 
directions for comparison (Fig. 10).  

 

Figure 9:  PQR sensor locations along the boom  

 

Figure 10:  Arbitrary sensor locations along the boom 

By extracting the strain values at corresponding PQR and arbitrary sensor 
locations, we use equation (6) to solve for inferred load magnitudes given the 
varying number of sensors and locations. The relative load magnitude error is 
calculated based on the following metric:   

relative	load	magnitude	error =
y∑ (𝛼($ − 𝛼+$)+&

$'(

y∑ 𝛼+$+&
$'(

, 

where 𝛼( is the inferred load magnitude vector using equation (6), and 𝛼+ =
[1,1,1,1,1,1]8 is the actual load magnitude vector used by the Nastran 
simulation. The resultant relative errors given varying number of sensors for 
PQR, and arbitrary sensor locations are plotted in Fig. 11.  



 

Figure 11:  Table comparing inferred alpha error between PQR and arbitrary 
sensor locations for various number of sensors 

By comparing the different sensor variables, we can observe the effect that 
various numbers of PQR sensor locations have on reducing the relative error in 
load magnitude inference of the digital twin. Most significantly, the PQR 
sensor placement reduces relative error down to 0.009% when using 5 sensors, 
which is 251.07% more accurate compared to the relative error of 5 arbitrary 
sensor locations.  

4.2.2 Digital Twin for Dynamic Loads 

We assess the system's dynamic characteristics by computing the first 1500 
natural modes of the system. The cumulative sum of the percent modal 
effective mass against the number of modes is plotted in Fig. 12 for each of the 
6 nodal degrees-of-freedom (DOF). The percent modal effective mass indicates 
how much each mode contributes to the system's overall dynamic behavior. To 
select the modes for the surrogate model, we identify 18 modes with a 
percentage modal effective mass of at least 1% for any nodal DOF. We remove 
4 of the 18 modes whose natural frequency is more than 50 times the lowest 
natural frequency to ensure the dynamical system is not too stiff numerically. 
The remaining 14 modes are used to generate the digital twin results in this 
section. 



 

Figure 12:  Cumulative percent modal effective mass for all DOF  
 
To generate the synthetic sensor data, we apply a dynamic load with 
magnitudes  

𝛼(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎡
0.18126989
0.15373705
0.08891329
0.07566059
0.13601713
0.04245141⎦

⎥
⎥
⎥
⎥
⎤

sin(21882.17𝑡). 

 
We also introduced Rayleigh damping with a mass coefficient of 0.1 and 
stiffness coefficient of 0.0005. For the preliminary results, we assume to have 
sensor measurements for the y displacement (DOF 1) at Node 2930 (near the 
motor in Fig. 12) for 𝑡 = [0, 0.0091] seconds, sampled at approximately 
1MHz, and is corrupted by Gaussian white noise with a covariance of 
3.66 × 106(9. The synthetic displacement data is used to infer the 
displacements for the rest of the boom arm using the digital twin approach in 
Section 3.2, while assuming that 𝛼(𝑡) is unknown. Fig. 14 shows the time 
history of the synthetic displacement data, as well as the inferred values of the 
measured displacement and the unobserved displacements for all nodal DOFs 
at Node 2942 (near the fixed end of the boom arm in Fig. 13). Fig. 14 also 
shows the “ground truth” which is the actual uncorrupted displacement at these 
nodes from the original dynamic simulation for comparison. Figures in the first 
column of Fig. 15 present an example visualization of the inferred 
displacement field over the entire boom arm at 3 different time values. Figures 
in the second column of Fig. 15 show the deformed shapes of the boom (scaled 
up by a factor of 1000) based on the inferred displacement field superimposed 



on the actual deformed shape based on the original simulation. The preliminary 
results in Figs. 14 and 15 suggest that it is possible to infer the full dynamic 
state of a structural system based on a single localized sensor measurement. 
 
For the presentation, we aim to present similar results using actual strain 
measurements taken during dynamic load testing with the Instron and UR10e.  
 

 
Figure 13:  Sensor measurement locations 

 

 
Figure 14:  Time histories of the synthetic displacement measurements (top left) 

at Node 2930 and the inferred displacements for the 6 nodal DOFs at node 2342. 
 

 
Figure 15:  Deformed shapes of the boom arm at different time values based on 

the inferred displacement field.   



4.3 Nastran and Physical Data Validation Results 
Initial Instron testing at various loads and directions are described in Table 1. 
 

Table 1:  Instron Static Load Experiment Setup 
Loading Configuration Maximum Force Applied 

(N) 
Angle of Test Rig (°) 

1 50.06 0 
2 100.04 0 
3 150.01 0 
4 250.02 0 
5 50.08 180 
6 100.04 180 
7 150.01 180 
8 250.04 180 
9 50.03 90 
10 100.05 90 
11 150.07 90 
12 250.07 90 
13 50 270 
14 100.02 270 
15 150.06 270 
16 250.06 270 
17 50.02 45 
18 100.04 45 
19 150.03 45 
20 250.06 45 
21 50.03 225 
22 100.01 225 
23 150.05 225 
24 250.07 225 

 
From the testing configurations described, the Instron vertical displacement 
and strain readings are calculated using equation (1) from recorded strain 
gauge voltages during physical testing, while the corresponding strain and 
displacement at the same locations are extracted from Nastran simulations. 
Initial data and relative error results are generated for loading configurations 1 
to 4, for the two strain gauge positions mounted along the length of the boom, 
as shown in Fig. 16. The initial displacement results from Instron and Nastran 
are listed in Table 2, and the strain results at strain gauge positions 2 and 3 are 
calculated in Table 3. Larger discrepancies are observed as the load increases. 
We intend to further investigate the cause of these errors for the presentation. 
 



 
Figure 16:  Configuration of strain gauge positions, mounting in line with 

indicated arrow 
 

Table 2:  Maximum Displacement and Relative Error for Various Loading 
Configurations 

Loading 
Configuration 

Instron 
Compressive 
Displacement at 
Maximum Force 
(mm) 

Nastran 
Displacement 
(mm) 

Relative 
Displacement Error 
(%) 

1 1.28 1.18 8.69% 
2 2.63 2.00 31.59% 
3 4.02 2.82 42.59% 
4 6.84 4.46 53.28% 

 
Table 3:  Strain Readings and Sensor Locations 

Loading 
Configuration 

Instron Strain 
Reading  

Nastran Strain 
Reading 

Relative Error at 
Sensor Locations 
(%) 

2 3 2 3 2 3 
1 6.0E-05 1.0E-04 5.8E-05 9.1E-05 3.90% 13.59% 
2 1.4E-04 2.1E-04 9.7E-05 1.5E-04 40.76% 38.20% 
3 2.5E-04 2.9E-04 1.4E-04 2.2E-04 81.31% 32.98% 
4 3.3E-04 4.9E-04 2.2E-04 3.5E-04 50.44% 40.60% 

 
  



5. Conclusion 
 
The aerospace and automotive industries are increasingly challenged by 
traditional certification workflows, which struggle to keep pace with new 
materials like composites and additive manufacturing. These materials have 
complex failure mechanisms that current certification methods, relying on 
conservative safety factors and physical testing, cannot efficiently address. As 
a result, engineers face barriers to fully utilizing the potential of novel 
materials and structures. 
 
Digital twins offer a promising solution by providing real-time performance 
insights through virtual replicas of physical systems. These models, combined 
with sensor data, enable better failure prediction, fatigue analysis, and 
structural monitoring, particularly for complex materials. Preliminary results in 
our work on a sensorized test rig for an UAV propeller arm has demonstrated 
the potential in our digital twin algorithm to quickly and accurately infer 
system properties based on limited synthetic data. We have successfully 
developed static and linear dynamic FEA surrogate models for the digital twin 
algorithm using Autodesk Nastran and are working on refining the digital twin 
algorithm to improve predictions and minimize discrepancies with simulation 
and experimental data. 
 
Future work will focus on optimizing sensor placement, reducing data noise, 
and improving model accuracy to better simulate real-world conditions. By 
addressing current challenges in data integration and model refinement, we aim 
to develop a robust digital twin-based certification process that can expedite 
material adoption, reduce costs, and enable more adaptive, reliable engineering 
workflows. Ultimately, this approach has the potential to revolutionize 
certification, driving innovation across industries. 
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