The BIM approach centers on an intelligent model. Acting as a collaborative hub throughout the entire lifecycle of a project, it can be shared across teams and gains intelligence as different practitioners add their expertise and document project updates. Not only does this intelligent modeling process assist and improve project quality, it also helps organizations in four distinct ways:

1. **WORKFLOW EFFICIENCY GAINS**
 - Make design decisions earlier with ‘in-context’ models
 - Quickly compare cause-and-effect by analyzing multiple scenarios
 - Keep teams working on the most up-to-date information with a dynamic design environment
 - Reduce rework with design and construction coordination

2. **FINANCIAL ADVANTAGES**
 - Achieve the best outcome at the least cost
 - Saving on project costs by more accurately calculating materials and quantities
 - Support Public-Private Partnerships by integrating design and construction

3. **ECONOMIC ADVANTAGES**
 - There is potential for BIM standardization to foster economic growth. Governments around the world are demanding that BIM is used to achieve project efficiencies, cut costs and set global standards.
 - Pressures to adopt are slowly pushing designers and construction professionals towards using BIM to its full advantage.

4. **TECHNOLOGY**
 - Tap into infinite storage and harness the power of multiple computers for analysis and increasing real-time-based computing
 - Test workflow models in silos of computer algorithms that replicate patterns in nature
 - Get millimeter-level accuracy with engineering-grade BIM models that can be used in construction or new modes of transportation

The next generation of transportation infrastructure is working to combat congestion and enhance safety and sustainability. BIM provides the means and mechanism to ensure that each new project contributes towards these goals with software that aids advancements in design, engineering and construction via a collaborative and quantifiable process.